2016, 13(2): 425-442. doi: 10.3934/mbe.2015010

Modeling the intrinsic dynamics of foot-and-mouth disease

1. 

Department of Mathematics, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe

2. 

NSF Center for Integrated Pest Management, NC State University, Raleigh, NC 27606, United States

3. 

Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, United States

Received  April 2015 Revised  November 2015 Published  December 2015

We propose a new mathematical modeling framework to investigate the transmission and spread of foot-and-mouth disease. Our models incorporate relevant biological and ecological factors, vaccination effects, and seasonal impacts during the complex interaction among susceptible, vaccinated, exposed, infected, carrier, and recovered animals. We conduct both epidemic and endemic analysis, with a focus on the threshold dynamics characterized by the basic reproduction numbers. In addition, numerical simulation results are presented to demonstrate the analytical findings.
Citation: Steady Mushayabasa, Drew Posny, Jin Wang. Modeling the intrinsic dynamics of foot-and-mouth disease. Mathematical Biosciences & Engineering, 2016, 13 (2) : 425-442. doi: 10.3934/mbe.2015010
References:
[1]

F. Aftosa, Foot and Mouth Disease,, , (2014).   Google Scholar

[2]

A. Alexandersen, Z. Zhang and I. A. Donaldson, Aspects of the persistence of foot-and -mouth disease virus in animals-the carrier problem,, Microbes and Infection, 4 (2002), 1099.   Google Scholar

[3]

C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications,, Mathematical Biosciences and Engineering, 1 (2004), 361.  doi: 10.3934/mbe.2004.1.361.  Google Scholar

[4]

M. E. Chase-Topping, I. Handel, B. M. Bankowski, N. D. Juleff, D. Gibson, S. J. Cox, M. A. Windsor, E. Reid, C. Doel, R. Howey, P. V. Barnett, M. E. J. Woolhouse and B. Charleston, Understanding foot-and-mouth disease virus transmission biology: Identification of the indicators of infectiousness,, Veterinary Research, 44 (2013).  doi: 10.1186/1297-9716-44-46.  Google Scholar

[5]

T. A. Dekker, H. Vernooij, A. Bouma and A. Stegeman, Rate of foot-and-mouth disease virus transmission by carriers quantified from experimental data,, Risk Analysis, 28 (2008), 303.  doi: 10.1111/j.1539-6924.2008.01020.x.  Google Scholar

[6]

O. Diekmann and J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,, Wiley, (2000).   Google Scholar

[7]

J. Gloster, H. Champion, J. Sorensen, T. Mikkelsen, D. Ryall, P. Astrup, S. Alexandersen and A. Donaldson, Airborne transmission of foot-and-mouth disease virus from Burnside Farm, Heddon-on-the-Wall, Northumberland, during the 2001 epidemic in the United Kingdom,, The Veterinary Record, 152 (2003), 525.   Google Scholar

[8]

R. R. Kao, L. Danon, D. M. Green and I. Z. Kiss, Demographic structure and pathogen dynamics on the network of livestock movements in Great Britain,, Proceedings of the Royal Society B, 273 (2006), 1999.  doi: 10.1098/rspb.2006.3505.  Google Scholar

[9]

M. J. Keeling, M. E. J. Woolhouse, R. M. May, G. Davies and B. T. Grenfell, Modelling vaccination strategies against foot-and-mouth disease,, Nature, 421 (2003), 136.  doi: 10.1038/nature01343.  Google Scholar

[10]

R. P. Kitching, Identification of foot and mouth disease virus carrier and subclinically infected animals and differentiation from vaccinated animals,, Revue scientifique et technique (International Office of Epizootics), 21 (2002), 531.   Google Scholar

[11]

R. P. Kitching, A. M. Humber and M. V. Thrusfield, A review of foot-and-mouth disease with special consideration for the clinical and epidemiological factors relevant to predictive modelling of the disease,, Veterinary Journal, 169 (2005), 197.  doi: 10.1016/j.tvjl.2004.06.001.  Google Scholar

[12]

T. J. Knight-Jones, A. N. Bulut, K. D. Stark, D. U. Pfeiffer, K. J. Sumption and D. J. Paton, Retrospective evaluation of foot-and-mouth disease vaccine effectiveness in Turkey,, Vaccine, 32 (2014), 1848.  doi: 10.1016/j.vaccine.2014.01.071.  Google Scholar

[13]

G. E. Lahodny Jr., R. Gautam and R. Ivanek, Estimating the probability of an extinction or major outbreak for an environmentally transmitted infectious disease,, Journal of Biological Dynamics, 9 (2015), 128.  doi: 10.1080/17513758.2014.954763.  Google Scholar

[14]

J. S. LaSalle, The stability of Dynamical Systems,, SIAM: Philadelphia, (1976).   Google Scholar

[15]

S. Mushayabasa, C. P. Bhunu and M. Dhlamini, Impact of vaccination and culling on controlling foot and mouth disease: a mathematical modeling approach,, World Journal of Vaccines, 1 (2011), 156.  doi: 10.4236/wjv.2011.14016.  Google Scholar

[16]

S. Parida, Vaccination against foot-and-mouth disease virus: Strategies and effectiveness,, Expert Review of Vaccines, 8 (2009), 347.  doi: 10.1586/14760584.8.3.347.  Google Scholar

[17]

D. Posny and J. Wang, Modelling cholera in periodic environments,, Journal of Biological Dynamics, 8 (2014), 1.  doi: 10.1080/17513758.2014.896482.  Google Scholar

[18]

D. Posny and J. Wang, Computing basic reproductive numbers for epidemiological models in nonhomogeneous environments,, Applied Mathematics and Computation, 242 (2014), 473.  doi: 10.1016/j.amc.2014.05.079.  Google Scholar

[19]

N. Ringa and C. T. Bauch, Impacts of constrained culling and vaccination on control of foot and mouth disease in near-endemic settings: A pair approximation model,, Epidemics, 9 (2014), 18.  doi: 10.1016/j.epidem.2014.09.008.  Google Scholar

[20]

Y. Sinkala, M. Simuunza, J. B. Muma, D. U. Pfeiffer, C. J. Kasanga and A. Mweene, Foot and mouth disease in Zambia: Spatial and temporal distributions of outbreaks, assessment of clusters and implications for control,, Onderstepoort Journal of Veterinary Research, 81 (2014).  doi: 10.4102/ojvr.v81i2.741.  Google Scholar

[21]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[22]

W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, Journal of Dynamics and Differential Equations, 20 (2008), 699.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[23]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

show all references

References:
[1]

F. Aftosa, Foot and Mouth Disease,, , (2014).   Google Scholar

[2]

A. Alexandersen, Z. Zhang and I. A. Donaldson, Aspects of the persistence of foot-and -mouth disease virus in animals-the carrier problem,, Microbes and Infection, 4 (2002), 1099.   Google Scholar

[3]

C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications,, Mathematical Biosciences and Engineering, 1 (2004), 361.  doi: 10.3934/mbe.2004.1.361.  Google Scholar

[4]

M. E. Chase-Topping, I. Handel, B. M. Bankowski, N. D. Juleff, D. Gibson, S. J. Cox, M. A. Windsor, E. Reid, C. Doel, R. Howey, P. V. Barnett, M. E. J. Woolhouse and B. Charleston, Understanding foot-and-mouth disease virus transmission biology: Identification of the indicators of infectiousness,, Veterinary Research, 44 (2013).  doi: 10.1186/1297-9716-44-46.  Google Scholar

[5]

T. A. Dekker, H. Vernooij, A. Bouma and A. Stegeman, Rate of foot-and-mouth disease virus transmission by carriers quantified from experimental data,, Risk Analysis, 28 (2008), 303.  doi: 10.1111/j.1539-6924.2008.01020.x.  Google Scholar

[6]

O. Diekmann and J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,, Wiley, (2000).   Google Scholar

[7]

J. Gloster, H. Champion, J. Sorensen, T. Mikkelsen, D. Ryall, P. Astrup, S. Alexandersen and A. Donaldson, Airborne transmission of foot-and-mouth disease virus from Burnside Farm, Heddon-on-the-Wall, Northumberland, during the 2001 epidemic in the United Kingdom,, The Veterinary Record, 152 (2003), 525.   Google Scholar

[8]

R. R. Kao, L. Danon, D. M. Green and I. Z. Kiss, Demographic structure and pathogen dynamics on the network of livestock movements in Great Britain,, Proceedings of the Royal Society B, 273 (2006), 1999.  doi: 10.1098/rspb.2006.3505.  Google Scholar

[9]

M. J. Keeling, M. E. J. Woolhouse, R. M. May, G. Davies and B. T. Grenfell, Modelling vaccination strategies against foot-and-mouth disease,, Nature, 421 (2003), 136.  doi: 10.1038/nature01343.  Google Scholar

[10]

R. P. Kitching, Identification of foot and mouth disease virus carrier and subclinically infected animals and differentiation from vaccinated animals,, Revue scientifique et technique (International Office of Epizootics), 21 (2002), 531.   Google Scholar

[11]

R. P. Kitching, A. M. Humber and M. V. Thrusfield, A review of foot-and-mouth disease with special consideration for the clinical and epidemiological factors relevant to predictive modelling of the disease,, Veterinary Journal, 169 (2005), 197.  doi: 10.1016/j.tvjl.2004.06.001.  Google Scholar

[12]

T. J. Knight-Jones, A. N. Bulut, K. D. Stark, D. U. Pfeiffer, K. J. Sumption and D. J. Paton, Retrospective evaluation of foot-and-mouth disease vaccine effectiveness in Turkey,, Vaccine, 32 (2014), 1848.  doi: 10.1016/j.vaccine.2014.01.071.  Google Scholar

[13]

G. E. Lahodny Jr., R. Gautam and R. Ivanek, Estimating the probability of an extinction or major outbreak for an environmentally transmitted infectious disease,, Journal of Biological Dynamics, 9 (2015), 128.  doi: 10.1080/17513758.2014.954763.  Google Scholar

[14]

J. S. LaSalle, The stability of Dynamical Systems,, SIAM: Philadelphia, (1976).   Google Scholar

[15]

S. Mushayabasa, C. P. Bhunu and M. Dhlamini, Impact of vaccination and culling on controlling foot and mouth disease: a mathematical modeling approach,, World Journal of Vaccines, 1 (2011), 156.  doi: 10.4236/wjv.2011.14016.  Google Scholar

[16]

S. Parida, Vaccination against foot-and-mouth disease virus: Strategies and effectiveness,, Expert Review of Vaccines, 8 (2009), 347.  doi: 10.1586/14760584.8.3.347.  Google Scholar

[17]

D. Posny and J. Wang, Modelling cholera in periodic environments,, Journal of Biological Dynamics, 8 (2014), 1.  doi: 10.1080/17513758.2014.896482.  Google Scholar

[18]

D. Posny and J. Wang, Computing basic reproductive numbers for epidemiological models in nonhomogeneous environments,, Applied Mathematics and Computation, 242 (2014), 473.  doi: 10.1016/j.amc.2014.05.079.  Google Scholar

[19]

N. Ringa and C. T. Bauch, Impacts of constrained culling and vaccination on control of foot and mouth disease in near-endemic settings: A pair approximation model,, Epidemics, 9 (2014), 18.  doi: 10.1016/j.epidem.2014.09.008.  Google Scholar

[20]

Y. Sinkala, M. Simuunza, J. B. Muma, D. U. Pfeiffer, C. J. Kasanga and A. Mweene, Foot and mouth disease in Zambia: Spatial and temporal distributions of outbreaks, assessment of clusters and implications for control,, Onderstepoort Journal of Veterinary Research, 81 (2014).  doi: 10.4102/ojvr.v81i2.741.  Google Scholar

[21]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[22]

W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, Journal of Dynamics and Differential Equations, 20 (2008), 699.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[23]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[3]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[4]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[5]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[6]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[7]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[8]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[9]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[10]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[11]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[14]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[15]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[16]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[17]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[18]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[19]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]