• Previous Article
    Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion
  • MBE Home
  • This Issue
  • Next Article
    The consequence of day-to-day stochastic dose deviation from the planned dose in fractionated radiation therapy
2016, 13(1): 171-191. doi: 10.3934/mbe.2016.13.171

Modelling HIV superinfection among men who have sex with men

1. 

Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an 710049, China

2. 

Department of Epidemiology and Biostatistics, Nanjing Medical University, Nanjing 210029, China

Received  October 2014 Revised  July 2015 Published  October 2015

Superinfection, a phenomenon that an individual infected by one HIV strain is re-infected by the second heterologous HIV strain, occurs in HIV infection. A mathematical model is formulated to examine how superinfection affects transmission dynamics of drug sensitive/resistant strains. Three reproduction numbers are defined: reproduction numbers $R_r$ and $R_s$ for drug-resistant and drug-sensitive strains, respectively, and the invasion reproduction number $R_s^r$. The disease-free equilibrium always exists and is locally stable when the larger of $R_s$ and $R_r$ is less than one. The drug resistant strain-only equilibrium is locally stable when $R_r>1$ and $R_s^r<1$. Numerical studies show that as the superinfection coefficient of the sensitive strain increases the system may (1) change to bistable states of disease-free equilibrium and the coexistence state from the stable disease-free equilibrium under no superinfection; (2) experience the stable resistant-strain only equilibrium, the bistable states of resistant-strain only equilibrium and the coexistence state, and the stable coexistence state in turn. This implies that superinfection of the sensitive strain is beneficial for two strains to coexist. While superinfection of the resistant strain makes resistant strain more likely to be sustained. The findings suggest that superinfection induces the complicated dynamics, and brings more difficulties in antiretroviral therapy.
Citation: Xiaodan Sun, Yanni Xiao, Zhihang Peng. Modelling HIV superinfection among men who have sex with men. Mathematical Biosciences & Engineering, 2016, 13 (1) : 171-191. doi: 10.3934/mbe.2016.13.171
References:
[1]

T. M. Allen and M. Altfeld, HIV-1 superinfection,, J. Allergy. Clin. Immun., 112 (2003), 829. doi: 10.1016/j.jaci.2003.08.037. Google Scholar

[2]

M. Amaku, M. N. Burattini, F. A. B. Coutinho and E. Massad, Modeling the dynamics of viral evolution considering competition within individuals hosts and at population level: the effects of treatment,, B. Math. Biol., 72 (2010), 1294. doi: 10.1007/s11538-009-9495-6. Google Scholar

[3]

R. F. Baggaley, G. P. Garnett and N. M. Ferguson, Modelling the impact of antiretroviral use in resource-poor settings,, Plos Med., 3 (2006). doi: 10.1371/journal.pmed.0030124. Google Scholar

[4]

D. R. Bangsberg, S. Perry, E. D. Charlebois, R. A. Clark, M. Roberston and et al., Non-adherence to highly active antiretroviral therapy predicts progression to AIDS,, AIDS, 15 (2001), 1181. doi: 10.1097/00002030-200106150-00015. Google Scholar

[5]

S. M. Blower, H. B. Gershengorn and R. M. Grant, A tale of two futures: HIV and antiretroviral therapy in San Francisco,, Science, 287 (2000), 650. doi: 10.1126/science.287.5453.650. Google Scholar

[6]

C. Chiyaka, Z. Mukandavire, P. Das, F. Nyabadza and et al., Theoretical analysis of mixed Plasmodium malariae and Plasmodium falciparum infections with partial cross-immunity,, J. Theor. Biol., 263 (2010), 169. doi: 10.1016/j.jtbi.2009.10.032. Google Scholar

[7]

B. Chohan, L. Lavrey, S. M. Rainwaer and J. Overbaugh, Evidence for frequent reinfection with human immunodeficiency virus type 1 of a different subtype,, J. Virol., 79 (2005), 10701. doi: 10.1128/JVI.79.16.10701-10708.2005. Google Scholar

[8]

M. S. Cohen, I. F. Hoffman, R. A. Royce, P. Kazebe, J. R. Dyer and et al., Reduction of concentraion of HIV-in in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1,, Lancet, 349 (1996), 1868. Google Scholar

[9]

O. Diekmann, J. A. Heesterbeek and J. A. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365. doi: 10.1007/BF00178324. Google Scholar

[10]

G. H. Friedland and A. Williams, Attaining higher goals in HIV treatment: The central importance of adherence,, AIDS, 13 (1999). Google Scholar

[11]

F. Gao, D. L. Robertson, S. G. Morrison, H. Hui, S. Craig and et al., The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin,, J. Virol., 70 (1996), 7013. Google Scholar

[12]

M. J. Gonzales, E. Delwart, S. Y. Rhee, R. Tsui, A. R. Zolopa and et al., Lack of detectable human immunodeficiency virus type 1 superinfection during 1072 person-years of observation,, J. Infect. Dis., 188 (2003), 397. doi: 10.1086/376534. Google Scholar

[13]

G. S. Gottlieb, D. C. Nickle, M. A. Jensen, K. G. Wong, J. Grobler and et al., Dual HIV-1 infection associated with rapid disease progression,, Lancet, 363 (2004), 619. doi: 10.1016/S0140-6736(04)15596-7. Google Scholar

[14]

P. Hartman, Ordinary Differential Equation,, Bikh$\brevea$user, (1982). Google Scholar

[15]

A. E. Jetzt, H. Yu, G. J. Klarmann, Y. Ron, B. D. Preston and et al., High rate of recombination throughout the human immunodeficiency virus type 1 genome,, J. Virol., 74 (2000), 1234. doi: 10.1128/JVI.74.3.1234-1240.2000. Google Scholar

[16]

S. Jost, M.-C. Bernard, L. Kaiser, B. Hirschel, B. Autran and et al., A patient with HIV-superinfection,, New. Engl. J. Med., 347 (2002), 731. doi: 10.1056/NEJMoa020263. Google Scholar

[17]

K. K. Koelsch, D. M. Smith, S. J. Little, C. C. Ignacio, T. R. Macaranas and et al., Clade B HIV superinfection with wild-type virus after primary infection with drug resistant clade B virus,, AIDS, 17 (2003). doi: 10.1097/00002030-200305020-00001. Google Scholar

[18]

T. Kuwata, Y. Miyazaki, T. Igarashi, J. Takehisa and M. Hayami, The rapid spread of recombinants during a natural in vitro infection with two human immunodeficiency virus type 1 strains,, J. Virol. 71 (1997), 71 (1997), 7088. Google Scholar

[19]

Q. Li, S. Cao, X. Chen, G. Sun, Y. Liu Y and Z. Jia, Stability analysis of an HIV/AIDS dynamics model with drug resistance,, Discrete. Dyn. Nat. Soc., (2012). doi: 10.1155/2012/162527. Google Scholar

[20]

J. Lou, J. Wu, L. Chen, Y. Ruan and Y. Shao, A sex-role-preference model for HIV transmission among men who have sex with men in China,, BMC Public Health, 9 (2009). doi: 10.1186/1471-2458-9-S1-S10. Google Scholar

[21]

F. Mammano, C. Petit and F. Clavel, Resistance-associated loss of viral fitness in human immunodeficiency virus type 1: Phenotypic analysis of protease and gag coevolution in protease inhibitor-treated patients,, J. Virol., 72 (1998), 7632. Google Scholar

[22]

M. Martcheva, B. M. Bolker and R. D. Holt, Vaccine-induced pathogen strain replacement: What are the mechanisms?, J. Roy. Soc. Interface, 5 (2008), 3. doi: 10.1098/rsif.2007.0236. Google Scholar

[23]

M. P. Pernas, C. Casado, R. Fuentes, M. J. Pérez-Elías and C. López-Galíndez, A dual superinfection and recombination within HIV-1 subtype B 12 years after primoinfection,, J. Acq. immun. Def. Synd., 42 (2006), 12. doi: 10.1097/01.qai.0000214810.65292.73. Google Scholar

[24]

A. Piantadosi, B. Chohan, V. Chohan, R. S. McClelland and J. Overbaugh, Chronic HIV-1 infection frequently fails to protect against superinfection,, Plos Pathog., 3 (2007). doi: 10.1371/journal.ppat.0030177. Google Scholar

[25]

A. Piantadosi, M. O. Ngayo, B. Chohan and J. Overbaugh, Examination of a second region of the HIV type 1 genome reveals additional cases of superinfection,, AIDS Res. Hum. Retrov., 24 (2008), 1221. doi: 10.1089/aid.2008.0100. Google Scholar

[26]

T. C. Porco and S. M. Blower, HIV vaccines: the effect of the mode of action on the coexistence of HIV subtypes,, Math. Popul. Stud., 8 (2000), 205. doi: 10.1080/08898480009525481. Google Scholar

[27]

A. Rachinger, I. G. Stolte, T. D. Van de Ven, J. A. Burger, M. Prins and et al., Absence of HIV-1 superinfection 1 year after infection between 1985-1987 coincides with a reduction in sexual risk behavior in the seroincident Amsterdam cohort of homosexual men,, Clin. Infect. Dis., 50 (2010), 1309. doi: 10.1086/651687. Google Scholar

[28]

S. M. Raimundo, H. M. Yang, E. Venturino and E. Massad, Modeling the emergence of HIV-1 drug resistance resulting from antiretroviral therapy: Insights from theoretical and numerical studies,, BioSystems, 108 (2012), 1. doi: 10.1016/j.biosystems.2011.11.009. Google Scholar

[29]

A. Ramos, D. J. Hu, L. Nguyen, K-O. Phan, S. Vanichseni and et al., Intersubtype human immunodeficiency virus type 1 superinfection following seroconversion to primary infection in two injection drug users,, J. Virol., 76 (2002), 7444. doi: 10.1128/JVI.76.15.7444-7452.2002. Google Scholar

[30]

A. D. Redd, C. E. Mullis, D. Serwadda, X. Kong, C. Martens and et al., The rates of HIV superinfection and primary HIV incidence in a general population in Rakai, Uganda,, J. Infect. Dis, 206 (2012), 267. doi: 10.1093/infdis/jis325. Google Scholar

[31]

A. K. Sethi, D. D. Celentano, S. J. Gange, R. D. Moore and J. E. Gallant, Association between adherence to antiretroviral therapy and human immunodeficiency virus drug resistance,, Clin. Infect. Dis., 37 (2003), 1112. doi: 10.1086/378301. Google Scholar

[32]

O. Sharomi and A. B. Gumel, Dynamical analysis of a multi-strain model of HIV in the presence of antiretroviral drugs,, J. Biol. Dyn., 2 (2008), 323. doi: 10.1080/17513750701775599. Google Scholar

[33]

D. M. Smith, D. D. Richman and S. J. Little, HIV superinfection,, J. Infect. Dis., 192 (2005), 438. doi: 10.1086/431682. Google Scholar

[34]

D. M. Smith, J. K. Wong, G. K. Hightoer, C. C. Ignacio, K. K. Koelsch and et al., Incidence of HIV superinfection following primary infection,, J. Amer. Med. Assoc., 292 (2004), 1177. doi: 10.1001/jama.292.10.1177. Google Scholar

[35]

X. Sun, Y. Xiao, Z. Peng and N. Wang, Modelling HIV/AIDS epidemic among men who have sex with men in China,, BioMed Res. Int., 2013 (2013). doi: 10.1155/2013/413260. Google Scholar

[36]

J. Takehisa, L. Zekeng, E. Ido, Y. Yamaguchi-Kabata, I. Mboudjeka and et al., Human immunodeficiency virus type 1 intergroup(M/O) recombination in Cameroon,, J. Virol., 73 (1999), 6810. Google Scholar

[37]

R. Tsui, B. L. Herring, J. D. Barbour, R. M. Grant, P. Bacchetti and et al., Human immuodeficiency virus type 1 superinfection was not detected following 215 years of injection drug user exposure,, J. Virol., 78 (2004), 94. doi: 10.1128/JVI.78.1.94-103.2004. Google Scholar

[38]

R. Vardavas and S. Blower, The emergence of HIV transmitted resistance in Botswana: "When will the WHO detection threshold be exceeded?", Plos One, 2 (2007). doi: 10.1371/journal.pone.0000152. Google Scholar

[39]

J. X. Velasco-Hernandez, A model for chagas disease involving transmission by vectors and blood transfusion,, Theor. Popul. Biol., 46 (1994), 1. doi: 10.1006/tpbi.1994.1017. Google Scholar

[40]

P. Venden Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[41]

P. L. Vernazza, B. L. Gilliam, M. Flepp, J. R. Dyer, A. C. Frank and et al., Effect of antiviral treatment on the shedding of HIV-1 in semen,, AIDS, 11 (1997), 1249. doi: 10.1097/00002030-199710000-00008. Google Scholar

[42]

W. Walter, Differential and Integral Inequalities,, Springer, (1970). Google Scholar

[43]

X. Wang, L. Yang, H. Li and et al., Factors associated with HIV virologic failure among patients on HAART for one year at three sentinel surveillance sities in China,, Curr. HIV. Res., 9 (2011), 103. doi: 10.2174/157016211795569122. Google Scholar

[44]

D. P. Wilson, J. Kahn and S. M. Blower, Predicting the epidemiological impact of antiretroviral allocation strategies in KwaZulu-Natal: The effect of the urban-rural divide,, PNAS, 103 (2006), 14228. doi: 10.1073/pnas.0509689103. Google Scholar

[45]

D. P. Wilson, M. G. Law, A. E. Grulich, D. A. Cooper and J. M. Kaldor, Relation between HIV viral load and infectiousness: a model-based analysis,, Lancet, 372 (2008), 314. doi: 10.1016/S0140-6736(08)61115-0. Google Scholar

[46]

H. Xing, Y. Ruan, J. Li and et al., HIV Drug resistance and its impact on antiretroviral therapy in chinese HIV-infected patients,, Plos one, 8 (2013). doi: 10.1371/journal.pone.0054917. Google Scholar

[47]

M. Xiridou, M. Kretzschmar and R. Geskus, Competition of pathogen strains leading to infection with variable infectivity and the effect of treatment,, Math. Biosci., 197 (2005), 153. doi: 10.1016/j.mbs.2005.04.007. Google Scholar

[48]

X. Xu, Y. Xiao and N. Wang, Modeling sexual transmission of HIV/AIDS in Jiangsu province, China,, Math. Method. Appl. Sci., 36 (2012), 234. doi: 10.1002/mma.2599. Google Scholar

show all references

References:
[1]

T. M. Allen and M. Altfeld, HIV-1 superinfection,, J. Allergy. Clin. Immun., 112 (2003), 829. doi: 10.1016/j.jaci.2003.08.037. Google Scholar

[2]

M. Amaku, M. N. Burattini, F. A. B. Coutinho and E. Massad, Modeling the dynamics of viral evolution considering competition within individuals hosts and at population level: the effects of treatment,, B. Math. Biol., 72 (2010), 1294. doi: 10.1007/s11538-009-9495-6. Google Scholar

[3]

R. F. Baggaley, G. P. Garnett and N. M. Ferguson, Modelling the impact of antiretroviral use in resource-poor settings,, Plos Med., 3 (2006). doi: 10.1371/journal.pmed.0030124. Google Scholar

[4]

D. R. Bangsberg, S. Perry, E. D. Charlebois, R. A. Clark, M. Roberston and et al., Non-adherence to highly active antiretroviral therapy predicts progression to AIDS,, AIDS, 15 (2001), 1181. doi: 10.1097/00002030-200106150-00015. Google Scholar

[5]

S. M. Blower, H. B. Gershengorn and R. M. Grant, A tale of two futures: HIV and antiretroviral therapy in San Francisco,, Science, 287 (2000), 650. doi: 10.1126/science.287.5453.650. Google Scholar

[6]

C. Chiyaka, Z. Mukandavire, P. Das, F. Nyabadza and et al., Theoretical analysis of mixed Plasmodium malariae and Plasmodium falciparum infections with partial cross-immunity,, J. Theor. Biol., 263 (2010), 169. doi: 10.1016/j.jtbi.2009.10.032. Google Scholar

[7]

B. Chohan, L. Lavrey, S. M. Rainwaer and J. Overbaugh, Evidence for frequent reinfection with human immunodeficiency virus type 1 of a different subtype,, J. Virol., 79 (2005), 10701. doi: 10.1128/JVI.79.16.10701-10708.2005. Google Scholar

[8]

M. S. Cohen, I. F. Hoffman, R. A. Royce, P. Kazebe, J. R. Dyer and et al., Reduction of concentraion of HIV-in in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1,, Lancet, 349 (1996), 1868. Google Scholar

[9]

O. Diekmann, J. A. Heesterbeek and J. A. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365. doi: 10.1007/BF00178324. Google Scholar

[10]

G. H. Friedland and A. Williams, Attaining higher goals in HIV treatment: The central importance of adherence,, AIDS, 13 (1999). Google Scholar

[11]

F. Gao, D. L. Robertson, S. G. Morrison, H. Hui, S. Craig and et al., The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin,, J. Virol., 70 (1996), 7013. Google Scholar

[12]

M. J. Gonzales, E. Delwart, S. Y. Rhee, R. Tsui, A. R. Zolopa and et al., Lack of detectable human immunodeficiency virus type 1 superinfection during 1072 person-years of observation,, J. Infect. Dis., 188 (2003), 397. doi: 10.1086/376534. Google Scholar

[13]

G. S. Gottlieb, D. C. Nickle, M. A. Jensen, K. G. Wong, J. Grobler and et al., Dual HIV-1 infection associated with rapid disease progression,, Lancet, 363 (2004), 619. doi: 10.1016/S0140-6736(04)15596-7. Google Scholar

[14]

P. Hartman, Ordinary Differential Equation,, Bikh$\brevea$user, (1982). Google Scholar

[15]

A. E. Jetzt, H. Yu, G. J. Klarmann, Y. Ron, B. D. Preston and et al., High rate of recombination throughout the human immunodeficiency virus type 1 genome,, J. Virol., 74 (2000), 1234. doi: 10.1128/JVI.74.3.1234-1240.2000. Google Scholar

[16]

S. Jost, M.-C. Bernard, L. Kaiser, B. Hirschel, B. Autran and et al., A patient with HIV-superinfection,, New. Engl. J. Med., 347 (2002), 731. doi: 10.1056/NEJMoa020263. Google Scholar

[17]

K. K. Koelsch, D. M. Smith, S. J. Little, C. C. Ignacio, T. R. Macaranas and et al., Clade B HIV superinfection with wild-type virus after primary infection with drug resistant clade B virus,, AIDS, 17 (2003). doi: 10.1097/00002030-200305020-00001. Google Scholar

[18]

T. Kuwata, Y. Miyazaki, T. Igarashi, J. Takehisa and M. Hayami, The rapid spread of recombinants during a natural in vitro infection with two human immunodeficiency virus type 1 strains,, J. Virol. 71 (1997), 71 (1997), 7088. Google Scholar

[19]

Q. Li, S. Cao, X. Chen, G. Sun, Y. Liu Y and Z. Jia, Stability analysis of an HIV/AIDS dynamics model with drug resistance,, Discrete. Dyn. Nat. Soc., (2012). doi: 10.1155/2012/162527. Google Scholar

[20]

J. Lou, J. Wu, L. Chen, Y. Ruan and Y. Shao, A sex-role-preference model for HIV transmission among men who have sex with men in China,, BMC Public Health, 9 (2009). doi: 10.1186/1471-2458-9-S1-S10. Google Scholar

[21]

F. Mammano, C. Petit and F. Clavel, Resistance-associated loss of viral fitness in human immunodeficiency virus type 1: Phenotypic analysis of protease and gag coevolution in protease inhibitor-treated patients,, J. Virol., 72 (1998), 7632. Google Scholar

[22]

M. Martcheva, B. M. Bolker and R. D. Holt, Vaccine-induced pathogen strain replacement: What are the mechanisms?, J. Roy. Soc. Interface, 5 (2008), 3. doi: 10.1098/rsif.2007.0236. Google Scholar

[23]

M. P. Pernas, C. Casado, R. Fuentes, M. J. Pérez-Elías and C. López-Galíndez, A dual superinfection and recombination within HIV-1 subtype B 12 years after primoinfection,, J. Acq. immun. Def. Synd., 42 (2006), 12. doi: 10.1097/01.qai.0000214810.65292.73. Google Scholar

[24]

A. Piantadosi, B. Chohan, V. Chohan, R. S. McClelland and J. Overbaugh, Chronic HIV-1 infection frequently fails to protect against superinfection,, Plos Pathog., 3 (2007). doi: 10.1371/journal.ppat.0030177. Google Scholar

[25]

A. Piantadosi, M. O. Ngayo, B. Chohan and J. Overbaugh, Examination of a second region of the HIV type 1 genome reveals additional cases of superinfection,, AIDS Res. Hum. Retrov., 24 (2008), 1221. doi: 10.1089/aid.2008.0100. Google Scholar

[26]

T. C. Porco and S. M. Blower, HIV vaccines: the effect of the mode of action on the coexistence of HIV subtypes,, Math. Popul. Stud., 8 (2000), 205. doi: 10.1080/08898480009525481. Google Scholar

[27]

A. Rachinger, I. G. Stolte, T. D. Van de Ven, J. A. Burger, M. Prins and et al., Absence of HIV-1 superinfection 1 year after infection between 1985-1987 coincides with a reduction in sexual risk behavior in the seroincident Amsterdam cohort of homosexual men,, Clin. Infect. Dis., 50 (2010), 1309. doi: 10.1086/651687. Google Scholar

[28]

S. M. Raimundo, H. M. Yang, E. Venturino and E. Massad, Modeling the emergence of HIV-1 drug resistance resulting from antiretroviral therapy: Insights from theoretical and numerical studies,, BioSystems, 108 (2012), 1. doi: 10.1016/j.biosystems.2011.11.009. Google Scholar

[29]

A. Ramos, D. J. Hu, L. Nguyen, K-O. Phan, S. Vanichseni and et al., Intersubtype human immunodeficiency virus type 1 superinfection following seroconversion to primary infection in two injection drug users,, J. Virol., 76 (2002), 7444. doi: 10.1128/JVI.76.15.7444-7452.2002. Google Scholar

[30]

A. D. Redd, C. E. Mullis, D. Serwadda, X. Kong, C. Martens and et al., The rates of HIV superinfection and primary HIV incidence in a general population in Rakai, Uganda,, J. Infect. Dis, 206 (2012), 267. doi: 10.1093/infdis/jis325. Google Scholar

[31]

A. K. Sethi, D. D. Celentano, S. J. Gange, R. D. Moore and J. E. Gallant, Association between adherence to antiretroviral therapy and human immunodeficiency virus drug resistance,, Clin. Infect. Dis., 37 (2003), 1112. doi: 10.1086/378301. Google Scholar

[32]

O. Sharomi and A. B. Gumel, Dynamical analysis of a multi-strain model of HIV in the presence of antiretroviral drugs,, J. Biol. Dyn., 2 (2008), 323. doi: 10.1080/17513750701775599. Google Scholar

[33]

D. M. Smith, D. D. Richman and S. J. Little, HIV superinfection,, J. Infect. Dis., 192 (2005), 438. doi: 10.1086/431682. Google Scholar

[34]

D. M. Smith, J. K. Wong, G. K. Hightoer, C. C. Ignacio, K. K. Koelsch and et al., Incidence of HIV superinfection following primary infection,, J. Amer. Med. Assoc., 292 (2004), 1177. doi: 10.1001/jama.292.10.1177. Google Scholar

[35]

X. Sun, Y. Xiao, Z. Peng and N. Wang, Modelling HIV/AIDS epidemic among men who have sex with men in China,, BioMed Res. Int., 2013 (2013). doi: 10.1155/2013/413260. Google Scholar

[36]

J. Takehisa, L. Zekeng, E. Ido, Y. Yamaguchi-Kabata, I. Mboudjeka and et al., Human immunodeficiency virus type 1 intergroup(M/O) recombination in Cameroon,, J. Virol., 73 (1999), 6810. Google Scholar

[37]

R. Tsui, B. L. Herring, J. D. Barbour, R. M. Grant, P. Bacchetti and et al., Human immuodeficiency virus type 1 superinfection was not detected following 215 years of injection drug user exposure,, J. Virol., 78 (2004), 94. doi: 10.1128/JVI.78.1.94-103.2004. Google Scholar

[38]

R. Vardavas and S. Blower, The emergence of HIV transmitted resistance in Botswana: "When will the WHO detection threshold be exceeded?", Plos One, 2 (2007). doi: 10.1371/journal.pone.0000152. Google Scholar

[39]

J. X. Velasco-Hernandez, A model for chagas disease involving transmission by vectors and blood transfusion,, Theor. Popul. Biol., 46 (1994), 1. doi: 10.1006/tpbi.1994.1017. Google Scholar

[40]

P. Venden Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[41]

P. L. Vernazza, B. L. Gilliam, M. Flepp, J. R. Dyer, A. C. Frank and et al., Effect of antiviral treatment on the shedding of HIV-1 in semen,, AIDS, 11 (1997), 1249. doi: 10.1097/00002030-199710000-00008. Google Scholar

[42]

W. Walter, Differential and Integral Inequalities,, Springer, (1970). Google Scholar

[43]

X. Wang, L. Yang, H. Li and et al., Factors associated with HIV virologic failure among patients on HAART for one year at three sentinel surveillance sities in China,, Curr. HIV. Res., 9 (2011), 103. doi: 10.2174/157016211795569122. Google Scholar

[44]

D. P. Wilson, J. Kahn and S. M. Blower, Predicting the epidemiological impact of antiretroviral allocation strategies in KwaZulu-Natal: The effect of the urban-rural divide,, PNAS, 103 (2006), 14228. doi: 10.1073/pnas.0509689103. Google Scholar

[45]

D. P. Wilson, M. G. Law, A. E. Grulich, D. A. Cooper and J. M. Kaldor, Relation between HIV viral load and infectiousness: a model-based analysis,, Lancet, 372 (2008), 314. doi: 10.1016/S0140-6736(08)61115-0. Google Scholar

[46]

H. Xing, Y. Ruan, J. Li and et al., HIV Drug resistance and its impact on antiretroviral therapy in chinese HIV-infected patients,, Plos one, 8 (2013). doi: 10.1371/journal.pone.0054917. Google Scholar

[47]

M. Xiridou, M. Kretzschmar and R. Geskus, Competition of pathogen strains leading to infection with variable infectivity and the effect of treatment,, Math. Biosci., 197 (2005), 153. doi: 10.1016/j.mbs.2005.04.007. Google Scholar

[48]

X. Xu, Y. Xiao and N. Wang, Modeling sexual transmission of HIV/AIDS in Jiangsu province, China,, Math. Method. Appl. Sci., 36 (2012), 234. doi: 10.1002/mma.2599. Google Scholar

[1]

Avner Friedman, Najat Ziyadi, Khalid Boushaba. A model of drug resistance with infection by health care workers. Mathematical Biosciences & Engineering, 2010, 7 (4) : 779-792. doi: 10.3934/mbe.2010.7.779

[2]

Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014

[3]

Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz. Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1185-1206. doi: 10.3934/mbe.2016038

[4]

Helen Moore, Weiqing Gu. A mathematical model for treatment-resistant mutations of HIV. Mathematical Biosciences & Engineering, 2005, 2 (2) : 363-380. doi: 10.3934/mbe.2005.2.363

[5]

Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129

[6]

Cristian Tomasetti, Doron Levy. An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences & Engineering, 2010, 7 (4) : 905-918. doi: 10.3934/mbe.2010.7.905

[7]

Zhenzhen Chen, Sze-Bi Hsu, Ya-Tang Yang. The continuous morbidostat: A chemostat with controlled drug application to select for drug resistance mutants. Communications on Pure & Applied Analysis, 2020, 19 (1) : 203-220. doi: 10.3934/cpaa.2020011

[8]

David Greenhalgh, Wafa Al-Fwzan. An improved optimistic three-stage model for the spread of HIV amongst injecting intravenous drug users. Conference Publications, 2009, 2009 (Special) : 286-299. doi: 10.3934/proc.2009.2009.286

[9]

Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333-362. doi: 10.3934/mbe.2009.6.333

[10]

Xinyue Fan, Claude-Michel Brauner, Linda Wittkop. Mathematical analysis of a HIV model with quadratic logistic growth term. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2359-2385. doi: 10.3934/dcdsb.2012.17.2359

[11]

Shingo Iwami, Shinji Nakaoka, Yasuhiro Takeuchi. Mathematical analysis of a HIV model with frequency dependence and viral diversity. Mathematical Biosciences & Engineering, 2008, 5 (3) : 457-476. doi: 10.3934/mbe.2008.5.457

[12]

Tyson Loudon, Stephen Pankavich. Mathematical analysis and dynamic active subspaces for a long term model of HIV. Mathematical Biosciences & Engineering, 2017, 14 (3) : 709-733. doi: 10.3934/mbe.2017040

[13]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[14]

Attila Dénes, Yoshiaki Muroya, Gergely Röst. Global stability of a multistrain SIS model with superinfection. Mathematical Biosciences & Engineering, 2017, 14 (2) : 421-435. doi: 10.3934/mbe.2017026

[15]

Nirav Dalal, David Greenhalgh, Xuerong Mao. Mathematical modelling of internal HIV dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 305-321. doi: 10.3934/dcdsb.2009.12.305

[16]

Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa. A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences & Engineering, 2005, 2 (4) : 811-832. doi: 10.3934/mbe.2005.2.811

[17]

Piotr Bajger, Mariusz Bodzioch, Urszula Foryś. Singularity of controls in a simple model of acquired chemotherapy resistance. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2039-2052. doi: 10.3934/dcdsb.2019083

[18]

Brandon Lindley, Qi Wang, Tianyu Zhang. A multicomponent model for biofilm-drug interaction. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 417-456. doi: 10.3934/dcdsb.2011.15.417

[19]

Divya Thakur, Belinda Marchand. Hybrid optimal control for HIV multi-drug therapies: A finite set control transcription approach. Mathematical Biosciences & Engineering, 2012, 9 (4) : 899-914. doi: 10.3934/mbe.2012.9.899

[20]

Hengki Tasman, Edy Soewono, Kuntjoro Adji Sidarto, Din Syafruddin, William Oscar Rogers. A model for transmission of partial resistance to anti-malarial drugs. Mathematical Biosciences & Engineering, 2009, 6 (3) : 649-661. doi: 10.3934/mbe.2009.6.649

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]