Citation: |
[1] |
E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.doi: 10.1137/S0036141000376086. |
[2] |
D. Breda, S. Maset and R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27 (2005), 482-495.doi: 10.1137/030601600. |
[3] |
D. Breda, S. Maset and R. Vermiglio, Stability of Linear Delay Differential Equations - A Numerical Approach with MATLAB, Springer Briefs in Control, Automation and Robotics, Springer, New York, 2015.doi: 10.1007/978-1-4939-2107-2. |
[4] |
K. L. Cooke, P. van der Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39 (1999), 332-352.doi: 10.1007/s002850050194. |
[5] | |
[6] |
Z. Jiang and W. Zhang, Bifurcation analysis in single-species population model with delay, Sci. China Math., 53 (2010), 1475-1481.doi: 10.1007/s11425-010-4008-5. |
[7] |
H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, no. 57 in Texts in Applied Mathematics, Springer, New York, 2011.doi: 10.1007/978-1-4419-7646-8. |
[8] |
J. Wei and X. Zou, Bifurcation analysis of a population model and the resulting {SIS} epidemic model with delay, J. Comput. Appl. Math., 197 (2006), 169-187.doi: 10.1016/j.cam.2005.10.037. |