2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227

A note on dynamics of an age-of-infection cholera model

1. 

School of Mathematical Science, Heilongjiang University, Harbin 150080, China

2. 

Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501

Received  March 2014 Revised  July 2015 Published  October 2015

A recent paper [F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 10, 2013, 1335--1349.] presented a model for the dynamics of cholera transmission. The model is incorporated with both the infection age of infectious individuals and biological age of pathogen in the environment. The basic reproduction number is proved to be a sharp threshold determining whether or not cholera dies out. The global stability for disease-free equilibrium and endemic equilibrium is proved by constructing suitable Lyapunov functionals. However, for the proof of the global stability of endemic equilibrium, we have to show first the relative compactness of the orbit generated by model in order to make use of the invariance principle. Furthermore, uniform persistence of system must be shown since the Lyapunov functional is possible to be infinite if $i(a, t)/i^* (a) =0$ on some age interval. In this note, we give a supplement to above paper with necessary mathematical arguments.
Citation: Jinliang Wang, Ran Zhang, Toshikazu Kuniya. A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2016, 13 (1) : 227-247. doi: 10.3934/mbe.2016.13.227
References:
[1]

F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model,, Math. Biosci. Eng., 10 (2013), 1335. doi: 10.3934/mbe.2013.10.1335.

[2]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs 25, (1988).

[3]

G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model,, SIAM J. Appl. Math., 72 (2012), 25. doi: 10.1137/110826588.

[4]

P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109. doi: 10.1080/00036810903208122.

[5]

C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes,, Math. Biosci. Eng., 9 (2012), 819. doi: 10.3934/mbe.2012.9.819.

[6]

H. L. Smith, Mathematics in Population Biology,, Princeton University Press, (2003).

[7]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence,, Amer. Math. Soc., (2011).

[8]

J. A. Walker, Dynamical Systems and Evolution Equations,, Plenum Press, (1980).

[9]

J. Wang, R. Zhang and T. Kuniya, The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes,, J. Biol. Dyna., 9 (2015), 73. doi: 10.1080/17513758.2015.1006696.

[10]

J. Wang, R. Zhang and T. Kuniya, Mathematical analysis for an age-structured HIV infection model with saturation infection rate,, Electron. J. Diff. Equ., 2015 (2015), 1.

[11]

J. Wang, R. Zhang and T. Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate,, J. Math. Anal. Appl., 432 (2015), 289. doi: 10.1016/j.jmaa.2015.06.040.

[12]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics,, Marcel Dekker, (1985).

[13]

J. Yang, Z. Qiu and X. Li, Global stability of an age-structured cholera model,, Math. Biosci. Eng., 11 (2014), 641. doi: 10.3934/mbe.2014.11.641.

show all references

References:
[1]

F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model,, Math. Biosci. Eng., 10 (2013), 1335. doi: 10.3934/mbe.2013.10.1335.

[2]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs 25, (1988).

[3]

G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model,, SIAM J. Appl. Math., 72 (2012), 25. doi: 10.1137/110826588.

[4]

P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109. doi: 10.1080/00036810903208122.

[5]

C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes,, Math. Biosci. Eng., 9 (2012), 819. doi: 10.3934/mbe.2012.9.819.

[6]

H. L. Smith, Mathematics in Population Biology,, Princeton University Press, (2003).

[7]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence,, Amer. Math. Soc., (2011).

[8]

J. A. Walker, Dynamical Systems and Evolution Equations,, Plenum Press, (1980).

[9]

J. Wang, R. Zhang and T. Kuniya, The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes,, J. Biol. Dyna., 9 (2015), 73. doi: 10.1080/17513758.2015.1006696.

[10]

J. Wang, R. Zhang and T. Kuniya, Mathematical analysis for an age-structured HIV infection model with saturation infection rate,, Electron. J. Diff. Equ., 2015 (2015), 1.

[11]

J. Wang, R. Zhang and T. Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate,, J. Math. Anal. Appl., 432 (2015), 289. doi: 10.1016/j.jmaa.2015.06.040.

[12]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics,, Marcel Dekker, (1985).

[13]

J. Yang, Z. Qiu and X. Li, Global stability of an age-structured cholera model,, Math. Biosci. Eng., 11 (2014), 641. doi: 10.3934/mbe.2014.11.641.

[1]

Fred Brauer, Zhisheng Shuai, P. van den Driessche. Dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1335-1349. doi: 10.3934/mbe.2013.10.1335

[2]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[3]

Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641

[4]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

[5]

Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449

[6]

Fred Brauer. Age-of-infection and the final size relation. Mathematical Biosciences & Engineering, 2008, 5 (4) : 681-690. doi: 10.3934/mbe.2008.5.681

[7]

Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859

[8]

Christine K. Yang, Fred Brauer. Calculation of $R_0$ for age-of-infection models. Mathematical Biosciences & Engineering, 2008, 5 (3) : 585-599. doi: 10.3934/mbe.2008.5.585

[9]

Carlota Rebelo, Alessandro Margheri, Nicolas Bacaër. Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1155-1170. doi: 10.3934/dcdsb.2014.19.1155

[10]

Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060

[11]

Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807

[12]

Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569-594. doi: 10.3934/mbe.2018026

[13]

Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369

[14]

Shu Liao, Jin Wang. Stability analysis and application of a mathematical cholera model. Mathematical Biosciences & Engineering, 2011, 8 (3) : 733-752. doi: 10.3934/mbe.2011.8.733

[15]

Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186

[16]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[17]

C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008

[18]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[19]

Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215

[20]

Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]