-
Previous Article
A leaky integrate-and-fire model with adaptation for the generation of a spike train
- MBE Home
- This Issue
-
Next Article
Preface
The effect of positive interspike interval correlations on neuronal information transmission
1. | Bernstein Center for Computational Neuroscience Berlin, Berlin 10115, Germany, Germany |
References:
[1] |
L. F. Abbott and W. G. Regehr, Synaptic computation,, Nature, 431 (2004), 796.
doi: 10.1038/nature03010. |
[2] |
R. Azouz and C. M. Gray, Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo,, Proc. Nat. Acad. Sci., 97 (2000), 8110. Google Scholar |
[3] |
D. Bernardi and B. Lindner, A frequency-resolved mutual information rate and its application to neural systems,, J. Neurophysiol., 113 (2014), 1342.
doi: 10.1152/jn.00354.2014. |
[4] |
S. Blankenburg, W. Wu, B. Lindner and S. Schreiber, Information filtering in resonant neurons,, J. Comput. Neurosci., 39 (2015), 349. Google Scholar |
[5] |
A. Borst and F. Theunissen, Information theory and neural coding,, Nat. Neurosci., 2 (1999), 947.
doi: 10.1038/14731. |
[6] |
N. Brenner, O. Agam, W. Bialek and R. de Ruyter van Steveninck, Statistical properties of spike trains: Universal and stimulus-dependent aspects,, Phys. Rev. E, 66 (2002).
doi: 10.1103/PhysRevE.66.031907. |
[7] |
P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods,, Springer, (2009). Google Scholar |
[8] |
N. Brunel, V. Hakim and M. J. E. Richardson, Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance,, Phys. Rev. E, 67 (2003).
doi: 10.1103/PhysRevE.67.051916. |
[9] |
M. Chacron, B. Lindner and A. Longtin, Threshold fatigue and information transfer,, J. Comput. Neurosci., 23 (2007), 301.
doi: 10.1007/s10827-007-0033-y. |
[10] |
M. J. Chacron, A. Longtin and L. Maler, Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli,, J. Neurosci., 21 (2001), 5328. Google Scholar |
[11] |
M. J. Chacron, B. Doiron, L. Maler, A. Longtin and J. Bastian, Non-classical receptive field mediates switch in a sensory neuron's frequency tuning,, Nature, 423 (2003), 77. Google Scholar |
[12] |
M. J. Chacron, B. Lindner and A. Longtin, Noise shaping by interval correlations increases information transfer,, Phys. Rev. Lett., 93 (2004). Google Scholar |
[13] |
T. Cover and J. Thomas, Elements of Information Theory,, Wiley, (1991).
doi: 10.1002/0471200611. |
[14] |
D. R. Cox and P. A. W. Lewis, The Statistical Analysis of Series of Events,, Chapman and Hall, (1966). Google Scholar |
[15] |
F. Droste, T. Schwalger and B. Lindner, Interplay of two signals in a neuron with short-term synaptic plasticity,, Front. Comp. Neurosci., 7 (2013).
doi: 10.3389/fncom.2013.00086. |
[16] |
T. A. Engel, L. Schimansky-Geier, A. V. M. Herz, S. Schreiber and I. Erchova, Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex,, J. Neurophysiol., 100 (2008), 1576.
doi: 10.1152/jn.01282.2007. |
[17] |
K. Fisch, T. Schwalger, B. Lindner, A. Herz and J. Benda, Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron,, J. Neurosci., 32 (2012), 17332.
doi: 10.1523/JNEUROSCI.6231-11.2012. |
[18] |
J. L. Folks and R. S. Chhikara, The inverse gaussian distribution and its statistical application-a review,, J. R. Statist. Soc. B, 40 (1978), 263.
|
[19] |
F. Gabbiani, Coding of time-varying signals in spike trains of linear and half-wave rectifying neurons,, Network Comp. Neural., 7 (1996), 61. Google Scholar |
[20] |
C. D. Geisler and J. M. Goldberg, A stochastic model of repetitive activity of neurons,, Biophys. J., 6 (1966), 53. Google Scholar |
[21] |
G. L. Gerstein and B. Mandelbrot, Random walk models for the spike activity of a single neuron,, Biophys. J., 4 (1964), 41. Google Scholar |
[22] |
W. Gerstner and W. M. Kistler, Spiking Neuron Models,, Cambridge University Press, (2002).
doi: 10.1017/CBO9780511815706. |
[23] |
J. D. Hamilton, Time Series Analysis,, Princeton University Press, (1994).
|
[24] |
A. V. Holden, Models of the Stochastic Activity of Neurones,, Springer-Verlag, (1976).
|
[25] |
E. M. Izhikevich, Resonate-and-fire neurons,, Neural. Netw., 14 (2001), 883. Google Scholar |
[26] |
B. Lindner, Interspike interval statistics of neurons driven by colored noise,, Phys. Rev. E, 69 (2004). Google Scholar |
[27] |
B. Lindner, Low-pass filtering of information in the leaky integrate-and-fire neuron driven by white noise,, in International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012) (eds. I. Visarath, (2012). Google Scholar |
[28] |
B. Lindner, M. J. Chacron, A. Longtin, Integrate-and-fire neurons with threshold noise - a tractable model of how interspike interval correlations affect neuronal signal transmission,, Phys. Rev. E, 72 (2005).
doi: 10.1103/PhysRevE.72.021911. |
[29] |
B. Lindner, D. Gangloff, A. Longtin and J. E. Lewis, Broadband coding with dynamic synapses,, J. Neurosci., 29 (2009), 2076.
doi: 10.1523/JNEUROSCI.3702-08.2009. |
[30] |
S. B. Lowen and M. C. Teich, Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales,, J. Acoust. Soc. Am., 92 (1992), 803. Google Scholar |
[31] |
D. J. Mar, C. C. Chow, W. Gerstner, R. W. Adams and J. J. Collins, Noise shaping in populations of coupled model neurons,, Proc. Natl. Acad. Sci., 96 (1999), 10450.
doi: 10.1073/pnas.96.18.10450. |
[32] |
G. Marsat and G. S. Pollack, Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron,, J. Neurophysiol., 92 (2004), 939. Google Scholar |
[33] |
C. Massot, M. Chacron and K. Cullen, Information transmission and detection thresholds in the vestibular nuclei: Single neurons vs. population encoding,, J. Neurophysiol., 105 (2011), 1798.
doi: 10.1152/jn.00910.2010. |
[34] |
M. Merkel and B. Lindner, Synaptic filtering of rate-coded information,, Phys. Rev. E, 81 (2010).
doi: 10.1103/PhysRevE.81.041921. |
[35] |
J. W. Middleton, A. Longtin, J. Benda and L. Maler, Postsynaptic receptive field size and spike threshold determine encoding of high-frequency information via sensitivity to synchronous presynaptic activity,, J. Neurophysiol., 101 (2009), 1160.
doi: 10.1152/jn.90814.2008. |
[36] |
A. B. Neiman and D. F. Russell, Sensory coding in oscillatory electroreceptors of paddlefish,, Chaos, 21 (2011).
doi: 10.1063/1.3669494. |
[37] |
A. Nikitin, N. Stocks and A. Bulsara, Enhancing the resolution of a sensor via negative correlation: A biologically inspired approach,, Phys. Rev. Lett., 109 (2012). Google Scholar |
[38] |
A. M. M. Oswald, M. J. Chacron, B. Doiron, J. Bastian and L. Maler, Parallel processing of sensory input by bursts and isolated spikes,, J. Neurosci., 24 (2004), 4351.
doi: 10.1523/JNEUROSCI.0459-04.2004. |
[39] |
S. A. Prescott and T. J. Sejnowski, Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms,, J. Neurosci., 28 (2008), 13649.
doi: 10.1523/JNEUROSCI.1792-08.2008. |
[40] |
F. Rieke, D. Bodnar and W. Bialek, Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents,, Proc. Biol. Sci., 262 (1995), 259. Google Scholar |
[41] |
F. Rieke, D. Warland, R. de Ruyter van Steveninck and W. Bialek, Spikes: Exploring the Neural Code,, MIT Press, (1999).
|
[42] |
J. C. Roddey, B. Girish and J. P. Miller, Assessing the performance of neural encoding models in the presence of noise,, J. Comput. Neurosci., 8 (2000), 95. Google Scholar |
[43] |
S. G. Sadeghi, M. J. Chacron, M. C. Taylor and K. E. Cullen, Neural variability, detection thresholds, and information transmission in the vestibular system,, J. Neurosci., 27 (2007), 771. Google Scholar |
[44] |
T. Schwalger, K. Fisch, J. Benda and B. Lindner, How noisy adaptation of neurons shapes interspike interval histograms and correlations,, PLoS Comp. Biol., 6 (2010).
doi: 10.1371/journal.pcbi.1001026. |
[45] |
R. Shannon, The mathematical theory of communication,, Bell Syst. Tech. J., 27 (1948), 379.
doi: 10.1002/j.1538-7305.1948.tb01338.x. |
[46] |
N. Sharafi, J. Benda and B. Lindner, Information filtering by synchronous spikes in a neural population,, J. Comp. Neurosci., 34 (2013), 285.
doi: 10.1007/s10827-012-0421-9. |
[47] |
L. Shiau, T. Schwalger and B. Lindner, ISI correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation,, J. Comp. Neurosci., 38 (2015), 589.
doi: 10.1007/s10827-015-0558-4. |
[48] |
J. Shin, The noise shaping neural coding hypothesis: A brief history and physiological implications,, Neurocomp., 44 (2002), 167.
doi: 10.1016/S0925-2312(02)00379-X. |
[49] |
J. H. Shin, K. R. Lee and S. B. Park, Novel neural circuits based on stochastic pulse coding and noise feedback pulse coding,, Int. J. Electronics, 74 (1993), 359.
doi: 10.1080/00207219308925840. |
[50] |
R. L. Stratonovich, Topics in the Theory of Random Noise,, Gordon and Breach, (1967). Google Scholar |
[51] |
R. D. Vilela and B. Lindner, Comparative study of different integrate-and-fire neurons: Spontaneous activity, dynamical response, and stimulus-induced correlation,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.031909. |
[52] |
R. S. Zucker and W. G. Regehr, Short-term synaptic plasticity,, Ann. Rev. Physiol., 64 (2002), 355. Google Scholar |
show all references
References:
[1] |
L. F. Abbott and W. G. Regehr, Synaptic computation,, Nature, 431 (2004), 796.
doi: 10.1038/nature03010. |
[2] |
R. Azouz and C. M. Gray, Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo,, Proc. Nat. Acad. Sci., 97 (2000), 8110. Google Scholar |
[3] |
D. Bernardi and B. Lindner, A frequency-resolved mutual information rate and its application to neural systems,, J. Neurophysiol., 113 (2014), 1342.
doi: 10.1152/jn.00354.2014. |
[4] |
S. Blankenburg, W. Wu, B. Lindner and S. Schreiber, Information filtering in resonant neurons,, J. Comput. Neurosci., 39 (2015), 349. Google Scholar |
[5] |
A. Borst and F. Theunissen, Information theory and neural coding,, Nat. Neurosci., 2 (1999), 947.
doi: 10.1038/14731. |
[6] |
N. Brenner, O. Agam, W. Bialek and R. de Ruyter van Steveninck, Statistical properties of spike trains: Universal and stimulus-dependent aspects,, Phys. Rev. E, 66 (2002).
doi: 10.1103/PhysRevE.66.031907. |
[7] |
P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods,, Springer, (2009). Google Scholar |
[8] |
N. Brunel, V. Hakim and M. J. E. Richardson, Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance,, Phys. Rev. E, 67 (2003).
doi: 10.1103/PhysRevE.67.051916. |
[9] |
M. Chacron, B. Lindner and A. Longtin, Threshold fatigue and information transfer,, J. Comput. Neurosci., 23 (2007), 301.
doi: 10.1007/s10827-007-0033-y. |
[10] |
M. J. Chacron, A. Longtin and L. Maler, Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli,, J. Neurosci., 21 (2001), 5328. Google Scholar |
[11] |
M. J. Chacron, B. Doiron, L. Maler, A. Longtin and J. Bastian, Non-classical receptive field mediates switch in a sensory neuron's frequency tuning,, Nature, 423 (2003), 77. Google Scholar |
[12] |
M. J. Chacron, B. Lindner and A. Longtin, Noise shaping by interval correlations increases information transfer,, Phys. Rev. Lett., 93 (2004). Google Scholar |
[13] |
T. Cover and J. Thomas, Elements of Information Theory,, Wiley, (1991).
doi: 10.1002/0471200611. |
[14] |
D. R. Cox and P. A. W. Lewis, The Statistical Analysis of Series of Events,, Chapman and Hall, (1966). Google Scholar |
[15] |
F. Droste, T. Schwalger and B. Lindner, Interplay of two signals in a neuron with short-term synaptic plasticity,, Front. Comp. Neurosci., 7 (2013).
doi: 10.3389/fncom.2013.00086. |
[16] |
T. A. Engel, L. Schimansky-Geier, A. V. M. Herz, S. Schreiber and I. Erchova, Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex,, J. Neurophysiol., 100 (2008), 1576.
doi: 10.1152/jn.01282.2007. |
[17] |
K. Fisch, T. Schwalger, B. Lindner, A. Herz and J. Benda, Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron,, J. Neurosci., 32 (2012), 17332.
doi: 10.1523/JNEUROSCI.6231-11.2012. |
[18] |
J. L. Folks and R. S. Chhikara, The inverse gaussian distribution and its statistical application-a review,, J. R. Statist. Soc. B, 40 (1978), 263.
|
[19] |
F. Gabbiani, Coding of time-varying signals in spike trains of linear and half-wave rectifying neurons,, Network Comp. Neural., 7 (1996), 61. Google Scholar |
[20] |
C. D. Geisler and J. M. Goldberg, A stochastic model of repetitive activity of neurons,, Biophys. J., 6 (1966), 53. Google Scholar |
[21] |
G. L. Gerstein and B. Mandelbrot, Random walk models for the spike activity of a single neuron,, Biophys. J., 4 (1964), 41. Google Scholar |
[22] |
W. Gerstner and W. M. Kistler, Spiking Neuron Models,, Cambridge University Press, (2002).
doi: 10.1017/CBO9780511815706. |
[23] |
J. D. Hamilton, Time Series Analysis,, Princeton University Press, (1994).
|
[24] |
A. V. Holden, Models of the Stochastic Activity of Neurones,, Springer-Verlag, (1976).
|
[25] |
E. M. Izhikevich, Resonate-and-fire neurons,, Neural. Netw., 14 (2001), 883. Google Scholar |
[26] |
B. Lindner, Interspike interval statistics of neurons driven by colored noise,, Phys. Rev. E, 69 (2004). Google Scholar |
[27] |
B. Lindner, Low-pass filtering of information in the leaky integrate-and-fire neuron driven by white noise,, in International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012) (eds. I. Visarath, (2012). Google Scholar |
[28] |
B. Lindner, M. J. Chacron, A. Longtin, Integrate-and-fire neurons with threshold noise - a tractable model of how interspike interval correlations affect neuronal signal transmission,, Phys. Rev. E, 72 (2005).
doi: 10.1103/PhysRevE.72.021911. |
[29] |
B. Lindner, D. Gangloff, A. Longtin and J. E. Lewis, Broadband coding with dynamic synapses,, J. Neurosci., 29 (2009), 2076.
doi: 10.1523/JNEUROSCI.3702-08.2009. |
[30] |
S. B. Lowen and M. C. Teich, Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales,, J. Acoust. Soc. Am., 92 (1992), 803. Google Scholar |
[31] |
D. J. Mar, C. C. Chow, W. Gerstner, R. W. Adams and J. J. Collins, Noise shaping in populations of coupled model neurons,, Proc. Natl. Acad. Sci., 96 (1999), 10450.
doi: 10.1073/pnas.96.18.10450. |
[32] |
G. Marsat and G. S. Pollack, Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron,, J. Neurophysiol., 92 (2004), 939. Google Scholar |
[33] |
C. Massot, M. Chacron and K. Cullen, Information transmission and detection thresholds in the vestibular nuclei: Single neurons vs. population encoding,, J. Neurophysiol., 105 (2011), 1798.
doi: 10.1152/jn.00910.2010. |
[34] |
M. Merkel and B. Lindner, Synaptic filtering of rate-coded information,, Phys. Rev. E, 81 (2010).
doi: 10.1103/PhysRevE.81.041921. |
[35] |
J. W. Middleton, A. Longtin, J. Benda and L. Maler, Postsynaptic receptive field size and spike threshold determine encoding of high-frequency information via sensitivity to synchronous presynaptic activity,, J. Neurophysiol., 101 (2009), 1160.
doi: 10.1152/jn.90814.2008. |
[36] |
A. B. Neiman and D. F. Russell, Sensory coding in oscillatory electroreceptors of paddlefish,, Chaos, 21 (2011).
doi: 10.1063/1.3669494. |
[37] |
A. Nikitin, N. Stocks and A. Bulsara, Enhancing the resolution of a sensor via negative correlation: A biologically inspired approach,, Phys. Rev. Lett., 109 (2012). Google Scholar |
[38] |
A. M. M. Oswald, M. J. Chacron, B. Doiron, J. Bastian and L. Maler, Parallel processing of sensory input by bursts and isolated spikes,, J. Neurosci., 24 (2004), 4351.
doi: 10.1523/JNEUROSCI.0459-04.2004. |
[39] |
S. A. Prescott and T. J. Sejnowski, Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms,, J. Neurosci., 28 (2008), 13649.
doi: 10.1523/JNEUROSCI.1792-08.2008. |
[40] |
F. Rieke, D. Bodnar and W. Bialek, Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents,, Proc. Biol. Sci., 262 (1995), 259. Google Scholar |
[41] |
F. Rieke, D. Warland, R. de Ruyter van Steveninck and W. Bialek, Spikes: Exploring the Neural Code,, MIT Press, (1999).
|
[42] |
J. C. Roddey, B. Girish and J. P. Miller, Assessing the performance of neural encoding models in the presence of noise,, J. Comput. Neurosci., 8 (2000), 95. Google Scholar |
[43] |
S. G. Sadeghi, M. J. Chacron, M. C. Taylor and K. E. Cullen, Neural variability, detection thresholds, and information transmission in the vestibular system,, J. Neurosci., 27 (2007), 771. Google Scholar |
[44] |
T. Schwalger, K. Fisch, J. Benda and B. Lindner, How noisy adaptation of neurons shapes interspike interval histograms and correlations,, PLoS Comp. Biol., 6 (2010).
doi: 10.1371/journal.pcbi.1001026. |
[45] |
R. Shannon, The mathematical theory of communication,, Bell Syst. Tech. J., 27 (1948), 379.
doi: 10.1002/j.1538-7305.1948.tb01338.x. |
[46] |
N. Sharafi, J. Benda and B. Lindner, Information filtering by synchronous spikes in a neural population,, J. Comp. Neurosci., 34 (2013), 285.
doi: 10.1007/s10827-012-0421-9. |
[47] |
L. Shiau, T. Schwalger and B. Lindner, ISI correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation,, J. Comp. Neurosci., 38 (2015), 589.
doi: 10.1007/s10827-015-0558-4. |
[48] |
J. Shin, The noise shaping neural coding hypothesis: A brief history and physiological implications,, Neurocomp., 44 (2002), 167.
doi: 10.1016/S0925-2312(02)00379-X. |
[49] |
J. H. Shin, K. R. Lee and S. B. Park, Novel neural circuits based on stochastic pulse coding and noise feedback pulse coding,, Int. J. Electronics, 74 (1993), 359.
doi: 10.1080/00207219308925840. |
[50] |
R. L. Stratonovich, Topics in the Theory of Random Noise,, Gordon and Breach, (1967). Google Scholar |
[51] |
R. D. Vilela and B. Lindner, Comparative study of different integrate-and-fire neurons: Spontaneous activity, dynamical response, and stimulus-induced correlation,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.031909. |
[52] |
R. S. Zucker and W. G. Regehr, Short-term synaptic plasticity,, Ann. Rev. Physiol., 64 (2002), 355. Google Scholar |
[1] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[2] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[3] |
Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040 |
[4] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[5] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
[6] |
Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 |
[7] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
[8] |
Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004 |
[9] |
Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155 |
[10] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[11] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020383 |
[12] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[13] |
Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171 |
[14] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[15] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[16] |
Wai-Ki Ching, Jia-Wen Gu, Harry Zheng. On correlated defaults and incomplete information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 889-908. doi: 10.3934/jimo.2020003 |
[17] |
Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049 |
[18] |
Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382 |
[19] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[20] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]