-
Previous Article
Successive spike times predicted by a stochastic neuronal model with a variable input signal
- MBE Home
- This Issue
-
Next Article
The effect of positive interspike interval correlations on neuronal information transmission
A leaky integrate-and-fire model with adaptation for the generation of a spike train
1. | Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli Federico II, Via Cintia, 80126 Napoli |
2. | Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Via Cintia, Napoli |
3. | Istituto per le Appplicazioni del Calcolo "Mauro Picone", Consiglio Nazionale delle Ricerche, Via Pietro Castellino, Napoli |
References:
[1] |
J. Benda and A. W. M. Herz, A universal model for spike-frequency adaptation, Neural Computation, 15 (2003), 2523-2564.
doi: 10.1162/089976603322385063. |
[2] |
R. Brette and W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity, Journal of Neurophysiology, 94 (2005), 3637-3642.
doi: 10.1152/jn.00686.2005. |
[3] |
D. A. Brown and P. R. Adams, Muscarinic supression of a novel voltage-sensitive K+ current in a vertebrate neuron, Nature, 183 (1980), 673-676. |
[4] |
A. Buonocore, L. Caputo, E. Pirozzi and M. F. Carfora, A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model, Mathematical Biosciences and Engineering, 11 (2014), 1-10. |
[5] |
A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, On a generalized leaky integrate-and-fire model for single neuron activity, in Computer Aided Systems Theory - EUROCAST 2005, Lecture Notes in Computer Science, 5717, Springer, Berlin-Heidelberg, 2009, 152-158.
doi: 10.1007/978-3-642-04772-5_21. |
[6] |
A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, On a stochastic leaky integrate-and-fire neuronal model, Neural Computation, 22 (2010), 2558-2585.
doi: 10.1162/NECO_a_00023. |
[7] |
A. Buonocore , A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities, Advances in Applied Probability, 19 (1987), 784-800.
doi: 10.2307/1427102. |
[8] |
A. N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biological Cybernetics, 95 (2006), 1-19.
doi: 10.1007/s00422-006-0068-6. |
[9] |
M. J. Chacron, K. Pakdaman and A. Longtin, Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue, Neural Computation, 15 (2003), 253-278.
doi: 10.1162/089976603762552915. |
[10] |
S. M. Crook, G. B. Ermentrout and J. M. Bower, Spike frequency adaptation affects the synchronization properties of networks of cortical oscillators, Neural Computation, 10 (1998), 837-854.
doi: 10.1162/089976698300017511. |
[11] |
Y. Dong, F. Mihalas and E. Niebur, Improved integral equation solution for the first passage time of leaky integrate-andfire neurons, Neural Computation, 23 (2011), 421-434.
doi: 10.1162/NECO_a_00078. |
[12] |
B. Ermentrout, M. Pascal and B. Gutkin, The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators, Neural Computation, 13 (2001), 1285-1310.
doi: 10.1162/08997660152002861. |
[13] |
I. A. Fleidervish, A. Friedman and M. J. Gutnick, Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices, The Journal of Physiology, 493 (1996), 83-97.
doi: 10.1113/jphysiol.1996.sp021366. |
[14] |
G. Fuhrmann, H. Markram and M. Tsodyks, Spike frequency adaptation and neocortical rhythms, Journal of Neurophysiology, 88 (2002), 761-770. |
[15] |
R. Granit, D. Kernell and G. K. Shortess, Quantitative aspects of repetitive firing of mammalian motoneurones, caused by injected currents, The Journal of Physiology, 168 (1963), 911-931.
doi: 10.1113/jphysiol.1963.sp007230. |
[16] |
B. Hille, Ion Channels of Excitable Membranes, Sinauer Associates, Sunderland, MA, 2001. |
[17] |
A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, Journal of Physiology, 117 (1952), 500-544. |
[18] |
A. V. Holden, Models of the Stochastic Activity of Neurones, Springer-Verlag, New York, 1976. |
[19] |
R. Jolivet, R. Kobayashi, A. Rauch, R. Naud, S. Shinomoto and W. Gerstner, A benchmark test for a quantitative assessment of simple neuron models, Journal of Neuroscience Methods, 169 (2008), 417-424.
doi: 10.1016/j.jneumeth.2007.11.006. |
[20] |
R. Kobayashi, Y. Tsubo and S. Shinomoto, Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold, Frontiers in Computational Neuroscience, 3 (2009), p9.
doi: 10.3389/neuro.10.009.2009. |
[21] |
G. La Camera, A. Rauch, H. R. Luescher, W. Senn and S. Fusi, Minimal models of adapted neuronal response to in vivo-like input currents, Neural Computation, 16 (2004), 2101-2124.
doi: 10.1162/0899766041732468. |
[22] |
Y. H. Liu and X. J. Wang, Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron, Journal of Computational Neuroscience, 10 (2001), 24-45. |
[23] |
D. V. Madison and R. A. Nicoll, Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro, The Journal of Physiology, 354 (1984), 319-331. |
[24] |
A. G. Nobile, L. M. Ricciardi and L. Sacerdote, Exponential trends of Ornstein-Uhlenbeck first-passage-time densities, Journal of Applied Probability, 22 (1985), 360-369.
doi: 10.2307/3213779. |
[25] |
R. K. Powers, A. Sawczuk, J. R. Musick and M. D. Binder, Multiple mechanisms of spike-frequency adaptation in motoneurones, Journal of Physiology, 93 (1999), 101-114.
doi: 10.1016/S0928-4257(99)80141-7. |
[26] |
A. Rauch, G. La Camera, H. R. Luescher, W. Senn and S. Fusi, Neocortical cells respond as integrate-and-fire neurons to in vivo-like input currents, Journal of Neurophysiology, 90 (2003), 1598-1612.
doi: 10.1152/jn.00293.2003. |
[27] |
L. Sacerdote and M. Giraudo, Stochastic integrate and fire models: A review on mathematical methods and their applications, in Stochastic Biomathematical Models with Applications to Neuronal Modeling (eds. Bachar, Batzel and Ditlevsen), Lecture Notes in Mathematics 2058, Springer, Berlin-Heidelberg (2013), 99-148.
doi: 10.1007/978-3-642-32157-3_5. |
[28] |
P. Sah, Ca2+-activated K+ currents in neurones: Types, physiological roles and modulation, Trends in Neurosciences, 19 (1996), 150-154.
doi: 10.1016/S0166-2236(96)80026-9. |
[29] |
S. Shinomoto, Y. Sakai and S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex, Neural Computation, 11 (1999), 935-951.
doi: 10.1162/089976699300016511. |
[30] |
W. R. Softky and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs, Journal of Neurosciences, 13 (1993), 334-350. |
[31] |
H. C. Tuckwell, Introduction to Theoretical Neurobiology, Vol. 2, Cambridge University Press, Cambridge, England, 1988. |
show all references
References:
[1] |
J. Benda and A. W. M. Herz, A universal model for spike-frequency adaptation, Neural Computation, 15 (2003), 2523-2564.
doi: 10.1162/089976603322385063. |
[2] |
R. Brette and W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity, Journal of Neurophysiology, 94 (2005), 3637-3642.
doi: 10.1152/jn.00686.2005. |
[3] |
D. A. Brown and P. R. Adams, Muscarinic supression of a novel voltage-sensitive K+ current in a vertebrate neuron, Nature, 183 (1980), 673-676. |
[4] |
A. Buonocore, L. Caputo, E. Pirozzi and M. F. Carfora, A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model, Mathematical Biosciences and Engineering, 11 (2014), 1-10. |
[5] |
A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, On a generalized leaky integrate-and-fire model for single neuron activity, in Computer Aided Systems Theory - EUROCAST 2005, Lecture Notes in Computer Science, 5717, Springer, Berlin-Heidelberg, 2009, 152-158.
doi: 10.1007/978-3-642-04772-5_21. |
[6] |
A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, On a stochastic leaky integrate-and-fire neuronal model, Neural Computation, 22 (2010), 2558-2585.
doi: 10.1162/NECO_a_00023. |
[7] |
A. Buonocore , A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities, Advances in Applied Probability, 19 (1987), 784-800.
doi: 10.2307/1427102. |
[8] |
A. N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biological Cybernetics, 95 (2006), 1-19.
doi: 10.1007/s00422-006-0068-6. |
[9] |
M. J. Chacron, K. Pakdaman and A. Longtin, Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue, Neural Computation, 15 (2003), 253-278.
doi: 10.1162/089976603762552915. |
[10] |
S. M. Crook, G. B. Ermentrout and J. M. Bower, Spike frequency adaptation affects the synchronization properties of networks of cortical oscillators, Neural Computation, 10 (1998), 837-854.
doi: 10.1162/089976698300017511. |
[11] |
Y. Dong, F. Mihalas and E. Niebur, Improved integral equation solution for the first passage time of leaky integrate-andfire neurons, Neural Computation, 23 (2011), 421-434.
doi: 10.1162/NECO_a_00078. |
[12] |
B. Ermentrout, M. Pascal and B. Gutkin, The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators, Neural Computation, 13 (2001), 1285-1310.
doi: 10.1162/08997660152002861. |
[13] |
I. A. Fleidervish, A. Friedman and M. J. Gutnick, Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices, The Journal of Physiology, 493 (1996), 83-97.
doi: 10.1113/jphysiol.1996.sp021366. |
[14] |
G. Fuhrmann, H. Markram and M. Tsodyks, Spike frequency adaptation and neocortical rhythms, Journal of Neurophysiology, 88 (2002), 761-770. |
[15] |
R. Granit, D. Kernell and G. K. Shortess, Quantitative aspects of repetitive firing of mammalian motoneurones, caused by injected currents, The Journal of Physiology, 168 (1963), 911-931.
doi: 10.1113/jphysiol.1963.sp007230. |
[16] |
B. Hille, Ion Channels of Excitable Membranes, Sinauer Associates, Sunderland, MA, 2001. |
[17] |
A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, Journal of Physiology, 117 (1952), 500-544. |
[18] |
A. V. Holden, Models of the Stochastic Activity of Neurones, Springer-Verlag, New York, 1976. |
[19] |
R. Jolivet, R. Kobayashi, A. Rauch, R. Naud, S. Shinomoto and W. Gerstner, A benchmark test for a quantitative assessment of simple neuron models, Journal of Neuroscience Methods, 169 (2008), 417-424.
doi: 10.1016/j.jneumeth.2007.11.006. |
[20] |
R. Kobayashi, Y. Tsubo and S. Shinomoto, Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold, Frontiers in Computational Neuroscience, 3 (2009), p9.
doi: 10.3389/neuro.10.009.2009. |
[21] |
G. La Camera, A. Rauch, H. R. Luescher, W. Senn and S. Fusi, Minimal models of adapted neuronal response to in vivo-like input currents, Neural Computation, 16 (2004), 2101-2124.
doi: 10.1162/0899766041732468. |
[22] |
Y. H. Liu and X. J. Wang, Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron, Journal of Computational Neuroscience, 10 (2001), 24-45. |
[23] |
D. V. Madison and R. A. Nicoll, Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro, The Journal of Physiology, 354 (1984), 319-331. |
[24] |
A. G. Nobile, L. M. Ricciardi and L. Sacerdote, Exponential trends of Ornstein-Uhlenbeck first-passage-time densities, Journal of Applied Probability, 22 (1985), 360-369.
doi: 10.2307/3213779. |
[25] |
R. K. Powers, A. Sawczuk, J. R. Musick and M. D. Binder, Multiple mechanisms of spike-frequency adaptation in motoneurones, Journal of Physiology, 93 (1999), 101-114.
doi: 10.1016/S0928-4257(99)80141-7. |
[26] |
A. Rauch, G. La Camera, H. R. Luescher, W. Senn and S. Fusi, Neocortical cells respond as integrate-and-fire neurons to in vivo-like input currents, Journal of Neurophysiology, 90 (2003), 1598-1612.
doi: 10.1152/jn.00293.2003. |
[27] |
L. Sacerdote and M. Giraudo, Stochastic integrate and fire models: A review on mathematical methods and their applications, in Stochastic Biomathematical Models with Applications to Neuronal Modeling (eds. Bachar, Batzel and Ditlevsen), Lecture Notes in Mathematics 2058, Springer, Berlin-Heidelberg (2013), 99-148.
doi: 10.1007/978-3-642-32157-3_5. |
[28] |
P. Sah, Ca2+-activated K+ currents in neurones: Types, physiological roles and modulation, Trends in Neurosciences, 19 (1996), 150-154.
doi: 10.1016/S0166-2236(96)80026-9. |
[29] |
S. Shinomoto, Y. Sakai and S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex, Neural Computation, 11 (1999), 935-951.
doi: 10.1162/089976699300016511. |
[30] |
W. R. Softky and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs, Journal of Neurosciences, 13 (1993), 334-350. |
[31] |
H. C. Tuckwell, Introduction to Theoretical Neurobiology, Vol. 2, Cambridge University Press, Cambridge, England, 1988. |
[1] |
Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123 |
[2] |
Daniele Andreucci, Dario Bellaveglia, Emilio N.M. Cirillo, Silvia Marconi. Effect of intracellular diffusion on current--voltage curves in potassium channels. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1837-1853. doi: 10.3934/dcdsb.2014.19.1837 |
[3] |
Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112 |
[4] |
C. Xiong, J.P. Miller, F. Gao, Y. Yan, J.C. Morris. Testing increasing hazard rate for the progression time of dementia. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 813-821. doi: 10.3934/dcdsb.2004.4.813 |
[5] |
C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603 |
[6] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[7] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[8] |
Yong Zhang, Francis Y. L. Chin, Francis C. M. Lau, Haisheng Tan, Hing-Fung Ting. Constant competitive algorithms for unbounded one-Way trading under monotone hazard rate. Mathematical Foundations of Computing, 2018, 1 (4) : 383-392. doi: 10.3934/mfc.2018019 |
[9] |
Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233 |
[10] |
Seung-Yeal Ha, Dohyun Kim, Jinyeong Park. Fast and slow velocity alignments in a Cucker-Smale ensemble with adaptive couplings. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4621-4654. doi: 10.3934/cpaa.2020209 |
[11] |
Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021 |
[12] |
Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257 |
[13] |
Renato Huzak. Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 171-215. doi: 10.3934/dcds.2016.36.171 |
[14] |
Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069 |
[15] |
Chunlai Mu, Jun Zhou, Yuhuan Li. Fast rate of dead core for fast diffusion equation with strong absorption. Communications on Pure and Applied Analysis, 2010, 9 (2) : 397-411. doi: 10.3934/cpaa.2010.9.397 |
[16] |
Yaonan Ma, Li-Zhi Liao. The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1681-1711. doi: 10.3934/jimo.2020040 |
[17] |
Marek Fila, Michael Winkler. Sharp rate of convergence to Barenblatt profiles for a critical fast diffusion equation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 107-119. doi: 10.3934/cpaa.2015.14.107 |
[18] |
Ilya Schurov. Duck farming on the two-torus: Multiple canard cycles in generic slow-fast systems. Conference Publications, 2011, 2011 (Special) : 1289-1298. doi: 10.3934/proc.2011.2011.1289 |
[19] |
Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure and Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219 |
[20] |
Anatoly Neishtadt, Carles Simó, Dmitry Treschev, Alexei Vasiliev. Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 621-650. doi: 10.3934/dcdsb.2008.10.621 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]