2016, 13(3): 495-507. doi: 10.3934/mbe.2016003

Successive spike times predicted by a stochastic neuronal model with a variable input signal

1. 

Dipartimento di Matematica e Applicazioni, Università degli studi di Napoli, FEDERICO II, Via Cinthia, Monte S.Angelo, Napoli, 80126, Italy

2. 

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli Federico II, Via Cintia, 80126 Napoli

Received  April 2015 Revised  November 2015 Published  January 2016

Two different stochastic processes are used to model the evolution of the membrane voltage of a neuron exposed to a time-varying input signal. The first process is an inhomogeneous Ornstein-Uhlenbeck process and its first passage time through a constant threshold is used to model the first spike time after the signal onset. The second process is a Gauss-Markov process identified by a particular mean function dependent on the first passage time of the first process. It is shown that the second process is also of a diffusion type. The probability density function of the maximum between the first passage time of the first and the second process is considered to approximate the distribution of the second spike time. Results obtained by simulations are compared with those following the numerical and asymptotic approximations. A general equation to model successive spike times is given. Finally, examples with specific input signals are provided.
Citation: Giuseppe D'Onofrio, Enrica Pirozzi. Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences & Engineering, 2016, 13 (3) : 495-507. doi: 10.3934/mbe.2016003
References:
[1]

A. N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biological Cybernetics, 95 (2006), 1-19. doi: 10.1007/s00422-006-0068-6.

[2]

A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, The first passage time problem for Gauss-diffusion processes: Algorithmic approaches and applications to LIF neuronal model, Methodol. Comput. Appl. Prob., 13 (2011), 29-57. doi: 10.1007/s11009-009-9132-8.

[3]

A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, On a stochastic leaky integrate-and-fire neuronal model, Neural Computation, 22 (2010), 2558-2585. doi: 10.1162/NECO_a_00023.

[4]

A. Buonocore, L. Caputo, E. Pirozzi and M. F. Carfora, Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons, Math. Biosci. Eng., 11 (2014), 189-201.

[5]

A. Buonocore, L. Caputo, A. G. Nobile and E. Pirozzi, Gauss-Markov processes in the presence of a reflecting boundary and applications in neuronal models, Applied Mathematics and Computation, 232 (2014), 799-809. doi: 10.1016/j.amc.2014.01.143.

[6]

A. Buonocore, L. Caputo, A. G. Nobile and E. Pirozzi, Restricted Ornstein-Uhlenbeck process and applications in neuronal models with periodic input signals, Journal of Computational and Applied Mathematics, 285 (2015), 59-71. doi: 10.1016/j.cam.2015.01.042.

[7]

A. Buonocore, L. Caputo, A. G. Nobile and E. Pirozzi, Gauss-markov processes for neuronal models including reversal potentials, Advances in Cognitive Neurodynamics (IV), 11 (2015), 299-305. doi: 10.1007/978-94-017-9548-7_42.

[8]

M. J. Chacron, K. Pakdaman and A. Longtin, Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire neuron with threshold fatigue. Neural Computation, 15 (2003), 253-276.

[9]

E. Di Nardo, A. G. Nobile, E. Pirozzi and L. M. Ricciardi, A computational approach to first passage-time problems for Gauss-Markov processes, Adv. Appl. Prob., 33 (2001), 453-482. doi: 10.1239/aap/999188324.

[10]

J. M. Fellous, P. H. Tiesinga, P. J. Thomas and T. J. Sejnowski, Discovering spike patterns in neuronal responses, The Journal of Neuroscience, 24 (2004), 2989-3001. doi: 10.1523/JNEUROSCI.4649-03.2004.

[11]

V. Giorno and S. Spina, On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model, Math. Bios. Eng., 11 (2014), 285-302.

[12]

H. Kim and S. Shinomoto, Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation, Math. Bios. Eng., 11 (2014), 49-62.

[13]

P. Lánský and S. Ditlevsen, A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models, Biol. Cybern., 99 (2008), 253-262. doi: 10.1007/s00422-008-0237-x.

[14]

P. Lánský, Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics, Physical Review E, 55 (1997), 2040-2043.

[15]

B. Lindner, Interspike interval statistics for neurons driven by colored noise, Physical Review E, 69 (2004), 022901-1-022901-4. doi: 10.1103/PhysRevE.69.022901.

[16]

L. M. Ricciardi and L. Sacerdote, The Ornstein-Uhlenbeck process as a model for neuronal activity, Biological Cybernetics, 35 (1979), 1-9. doi: 10.1007/BF01845839.

[17]

L. M. Ricciardi, A. Di Crescenzo, V. Giorno and A. G. Nobile, An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling, Mathematica Japonica, 50 (1999), 247-322.

[18]

T. Schwalger, F. Droste and B. Lindner, Statistical structure of neural spiking under non-Poissonian or other non-white stimulation, Journal of Computational Neuroscience, 39 (2015), 29-51. doi: 10.1007/s10827-015-0560-x.

[19]

M. Shaked and J. G. Shanthikumar, Stochastic Orders and Their Applications, Academic Press, Boston (USA), 1994.

[20]

S. Shinomoto, Y. Sakai and S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of cortical neurons, Neural Computation, 11 (1997), 935-951.

[21]

T. Taillefumier and M. 0. Magnasco, A phase transition in the first passage of a Brownian process through a fluctuating boundary: Implications for neural coding, PNAS, 110 (2013), E1438-E1443. doi: 10.1073/pnas.1212479110.

[22]

T. Taillefumier and M. Magnasco, A transition to sharp timing in stochastic leaky integrate-and-fire neurons driven by frozen noisy input, Neural Computation, 26 (2014), 819-859. doi: 10.1162/NECO_a_00577.

[23]

T. Taillefumier and M. Magnasco, A fast algorithm for the first-passage times of Gauss-Markov processes with Holder continuous boundaries, J. Stat. Phys., 140 (2010), 1130-1156. doi: 10.1007/s10955-010-0033-6.

[24]

P. J. Thomas, A lower bound for the first passage time density of the suprathreshold Ornstein-Uhlenbeck process, J. Appl. Probab., 48 (2011), 420-434. doi: 10.1239/jap/1308662636.

[25]

J. V. Toups, J. M. Fellous, P. J. Thomas, T. J. Sejnowski and P. H. Tiesinga, Multiple spike time patterns occur at bifurcation points of membrane potential dynamics, PLoS Comput. Biol., 8 (2012), e1002615, 1-19. doi: 10.1371/journal.pcbi.1002615.

[26]

H. C. Tuckwell, Stochastic Processes in the Neurosciences, SIAM, 1989. doi: 10.1137/1.9781611970159.

[27]

E. Urdapilleta, Series solution to the first-passage-time problem of a Brownian motion with an exponential time-dependent drift, J. Stat. Phys., 140 (2010), 1130-1156. doi: 10.1088/1751-8113/45/18/185001.

show all references

References:
[1]

A. N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biological Cybernetics, 95 (2006), 1-19. doi: 10.1007/s00422-006-0068-6.

[2]

A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, The first passage time problem for Gauss-diffusion processes: Algorithmic approaches and applications to LIF neuronal model, Methodol. Comput. Appl. Prob., 13 (2011), 29-57. doi: 10.1007/s11009-009-9132-8.

[3]

A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, On a stochastic leaky integrate-and-fire neuronal model, Neural Computation, 22 (2010), 2558-2585. doi: 10.1162/NECO_a_00023.

[4]

A. Buonocore, L. Caputo, E. Pirozzi and M. F. Carfora, Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons, Math. Biosci. Eng., 11 (2014), 189-201.

[5]

A. Buonocore, L. Caputo, A. G. Nobile and E. Pirozzi, Gauss-Markov processes in the presence of a reflecting boundary and applications in neuronal models, Applied Mathematics and Computation, 232 (2014), 799-809. doi: 10.1016/j.amc.2014.01.143.

[6]

A. Buonocore, L. Caputo, A. G. Nobile and E. Pirozzi, Restricted Ornstein-Uhlenbeck process and applications in neuronal models with periodic input signals, Journal of Computational and Applied Mathematics, 285 (2015), 59-71. doi: 10.1016/j.cam.2015.01.042.

[7]

A. Buonocore, L. Caputo, A. G. Nobile and E. Pirozzi, Gauss-markov processes for neuronal models including reversal potentials, Advances in Cognitive Neurodynamics (IV), 11 (2015), 299-305. doi: 10.1007/978-94-017-9548-7_42.

[8]

M. J. Chacron, K. Pakdaman and A. Longtin, Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire neuron with threshold fatigue. Neural Computation, 15 (2003), 253-276.

[9]

E. Di Nardo, A. G. Nobile, E. Pirozzi and L. M. Ricciardi, A computational approach to first passage-time problems for Gauss-Markov processes, Adv. Appl. Prob., 33 (2001), 453-482. doi: 10.1239/aap/999188324.

[10]

J. M. Fellous, P. H. Tiesinga, P. J. Thomas and T. J. Sejnowski, Discovering spike patterns in neuronal responses, The Journal of Neuroscience, 24 (2004), 2989-3001. doi: 10.1523/JNEUROSCI.4649-03.2004.

[11]

V. Giorno and S. Spina, On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model, Math. Bios. Eng., 11 (2014), 285-302.

[12]

H. Kim and S. Shinomoto, Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation, Math. Bios. Eng., 11 (2014), 49-62.

[13]

P. Lánský and S. Ditlevsen, A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models, Biol. Cybern., 99 (2008), 253-262. doi: 10.1007/s00422-008-0237-x.

[14]

P. Lánský, Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics, Physical Review E, 55 (1997), 2040-2043.

[15]

B. Lindner, Interspike interval statistics for neurons driven by colored noise, Physical Review E, 69 (2004), 022901-1-022901-4. doi: 10.1103/PhysRevE.69.022901.

[16]

L. M. Ricciardi and L. Sacerdote, The Ornstein-Uhlenbeck process as a model for neuronal activity, Biological Cybernetics, 35 (1979), 1-9. doi: 10.1007/BF01845839.

[17]

L. M. Ricciardi, A. Di Crescenzo, V. Giorno and A. G. Nobile, An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling, Mathematica Japonica, 50 (1999), 247-322.

[18]

T. Schwalger, F. Droste and B. Lindner, Statistical structure of neural spiking under non-Poissonian or other non-white stimulation, Journal of Computational Neuroscience, 39 (2015), 29-51. doi: 10.1007/s10827-015-0560-x.

[19]

M. Shaked and J. G. Shanthikumar, Stochastic Orders and Their Applications, Academic Press, Boston (USA), 1994.

[20]

S. Shinomoto, Y. Sakai and S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of cortical neurons, Neural Computation, 11 (1997), 935-951.

[21]

T. Taillefumier and M. 0. Magnasco, A phase transition in the first passage of a Brownian process through a fluctuating boundary: Implications for neural coding, PNAS, 110 (2013), E1438-E1443. doi: 10.1073/pnas.1212479110.

[22]

T. Taillefumier and M. Magnasco, A transition to sharp timing in stochastic leaky integrate-and-fire neurons driven by frozen noisy input, Neural Computation, 26 (2014), 819-859. doi: 10.1162/NECO_a_00577.

[23]

T. Taillefumier and M. Magnasco, A fast algorithm for the first-passage times of Gauss-Markov processes with Holder continuous boundaries, J. Stat. Phys., 140 (2010), 1130-1156. doi: 10.1007/s10955-010-0033-6.

[24]

P. J. Thomas, A lower bound for the first passage time density of the suprathreshold Ornstein-Uhlenbeck process, J. Appl. Probab., 48 (2011), 420-434. doi: 10.1239/jap/1308662636.

[25]

J. V. Toups, J. M. Fellous, P. J. Thomas, T. J. Sejnowski and P. H. Tiesinga, Multiple spike time patterns occur at bifurcation points of membrane potential dynamics, PLoS Comput. Biol., 8 (2012), e1002615, 1-19. doi: 10.1371/journal.pcbi.1002615.

[26]

H. C. Tuckwell, Stochastic Processes in the Neurosciences, SIAM, 1989. doi: 10.1137/1.9781611970159.

[27]

E. Urdapilleta, Series solution to the first-passage-time problem of a Brownian motion with an exponential time-dependent drift, J. Stat. Phys., 140 (2010), 1130-1156. doi: 10.1088/1751-8113/45/18/185001.

[1]

Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences & Engineering, 2016, 13 (3) : 613-629. doi: 10.3934/mbe.2016011

[2]

Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the MAP/M/s+G queueing model with generally distributed patience times. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2505-2532. doi: 10.3934/jimo.2021078

[3]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1689-1707. doi: 10.3934/jimo.2021039

[4]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[5]

Vincent Renault, Michèle Thieullen, Emmanuel Trélat. Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks and Heterogeneous Media, 2017, 12 (3) : 417-459. doi: 10.3934/nhm.2017019

[6]

Qiuying Li, Lifang Huang, Jianshe Yu. Modulation of first-passage time for bursty gene expression via random signals. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1261-1277. doi: 10.3934/mbe.2017065

[7]

Vladimir Kazakov. Sampling - reconstruction procedure with jitter of markov continuous processes formed by stochastic differential equations of the first order. Conference Publications, 2009, 2009 (Special) : 433-441. doi: 10.3934/proc.2009.2009.433

[8]

Karoline Disser, Matthias Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks and Heterogeneous Media, 2015, 10 (2) : 233-253. doi: 10.3934/nhm.2015.10.233

[9]

Wael Bahsoun, Paweł Góra. SRB measures for certain Markov processes. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 17-37. doi: 10.3934/dcds.2011.30.17

[10]

Mathias Staudigl. A limit theorem for Markov decision processes. Journal of Dynamics and Games, 2014, 1 (4) : 639-659. doi: 10.3934/jdg.2014.1.639

[11]

Artur Stephan, Holger Stephan. Memory equations as reduced Markov processes. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2133-2155. doi: 10.3934/dcds.2019089

[12]

Zhenzhong Zhang, Enhua Zhang, Jinying Tong. Necessary and sufficient conditions for ergodicity of CIR model driven by stable processes with Markov switching. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2433-2455. doi: 10.3934/dcdsb.2018053

[13]

Linyi Qian, Wei Wang, Rongming Wang. Risk-minimizing portfolio selection for insurance payment processes under a Markov-modulated model. Journal of Industrial and Management Optimization, 2013, 9 (2) : 411-429. doi: 10.3934/jimo.2013.9.411

[14]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences & Engineering, 2014, 11 (2) : 189-201. doi: 10.3934/mbe.2014.11.189

[15]

H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 1-25. doi: 10.3934/mbe.2012.9.1

[16]

Thomas Kruse, Mikhail Urusov. Approximating exit times of continuous Markov processes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3631-3650. doi: 10.3934/dcdsb.2020076

[17]

Xian Chen, Zhi-Ming Ma. A transformation of Markov jump processes and applications in genetic study. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5061-5084. doi: 10.3934/dcds.2014.34.5061

[18]

A. M. Vershik. Polymorphisms, Markov processes, quasi-similarity. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1305-1324. doi: 10.3934/dcds.2005.13.1305

[19]

S. Mohamad, K. Gopalsamy. Neuronal dynamics in time varying enviroments: Continuous and discrete time models. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 841-860. doi: 10.3934/dcds.2000.6.841

[20]

Lakhdar Aggoun, Lakdere Benkherouf. A Markov modulated continuous-time capture-recapture population estimation model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1057-1075. doi: 10.3934/dcdsb.2005.5.1057

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (94)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]