2016, 13(3): 495-507. doi: 10.3934/mbe.2016003

Successive spike times predicted by a stochastic neuronal model with a variable input signal

1. 

Dipartimento di Matematica e Applicazioni, Università degli studi di Napoli, FEDERICO II, Via Cinthia, Monte S.Angelo, Napoli, 80126, Italy

2. 

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli Federico II, Via Cintia, 80126 Napoli

Received  April 2015 Revised  November 2015 Published  January 2016

Two different stochastic processes are used to model the evolution of the membrane voltage of a neuron exposed to a time-varying input signal. The first process is an inhomogeneous Ornstein-Uhlenbeck process and its first passage time through a constant threshold is used to model the first spike time after the signal onset. The second process is a Gauss-Markov process identified by a particular mean function dependent on the first passage time of the first process. It is shown that the second process is also of a diffusion type. The probability density function of the maximum between the first passage time of the first and the second process is considered to approximate the distribution of the second spike time. Results obtained by simulations are compared with those following the numerical and asymptotic approximations. A general equation to model successive spike times is given. Finally, examples with specific input signals are provided.
Citation: Giuseppe D'Onofrio, Enrica Pirozzi. Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences & Engineering, 2016, 13 (3) : 495-507. doi: 10.3934/mbe.2016003
References:
[1]

A. N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input,, Biological Cybernetics, 95 (2006), 1.  doi: 10.1007/s00422-006-0068-6.  Google Scholar

[2]

A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, The first passage time problem for Gauss-diffusion processes: Algorithmic approaches and applications to LIF neuronal model,, Methodol. Comput. Appl. Prob., 13 (2011), 29.  doi: 10.1007/s11009-009-9132-8.  Google Scholar

[3]

A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, On a stochastic leaky integrate-and-fire neuronal model,, Neural Computation, 22 (2010), 2558.  doi: 10.1162/NECO_a_00023.  Google Scholar

[4]

A. Buonocore, L. Caputo, E. Pirozzi and M. F. Carfora, Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons,, Math. Biosci. Eng., 11 (2014), 189.   Google Scholar

[5]

A. Buonocore, L. Caputo, A. G. Nobile and E. Pirozzi, Gauss-Markov processes in the presence of a reflecting boundary and applications in neuronal models,, Applied Mathematics and Computation, 232 (2014), 799.  doi: 10.1016/j.amc.2014.01.143.  Google Scholar

[6]

A. Buonocore, L. Caputo, A. G. Nobile and E. Pirozzi, Restricted Ornstein-Uhlenbeck process and applications in neuronal models with periodic input signals,, Journal of Computational and Applied Mathematics, 285 (2015), 59.  doi: 10.1016/j.cam.2015.01.042.  Google Scholar

[7]

A. Buonocore, L. Caputo, A. G. Nobile and E. Pirozzi, Gauss-markov processes for neuronal models including reversal potentials,, Advances in Cognitive Neurodynamics (IV), 11 (2015), 299.  doi: 10.1007/978-94-017-9548-7_42.  Google Scholar

[8]

M. J. Chacron, K. Pakdaman and A. Longtin, Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire neuron with threshold fatigue., Neural Computation, 15 (2003), 253.   Google Scholar

[9]

E. Di Nardo, A. G. Nobile, E. Pirozzi and L. M. Ricciardi, A computational approach to first passage-time problems for Gauss-Markov processes,, Adv. Appl. Prob., 33 (2001), 453.  doi: 10.1239/aap/999188324.  Google Scholar

[10]

J. M. Fellous, P. H. Tiesinga, P. J. Thomas and T. J. Sejnowski, Discovering spike patterns in neuronal responses,, The Journal of Neuroscience, 24 (2004), 2989.  doi: 10.1523/JNEUROSCI.4649-03.2004.  Google Scholar

[11]

V. Giorno and S. Spina, On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model,, Math. Bios. Eng., 11 (2014), 285.   Google Scholar

[12]

H. Kim and S. Shinomoto, Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation,, Math. Bios. Eng., 11 (2014), 49.   Google Scholar

[13]

P. Lánský and S. Ditlevsen, A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models,, Biol. Cybern., 99 (2008), 253.  doi: 10.1007/s00422-008-0237-x.  Google Scholar

[14]

P. Lánský, Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics,, Physical Review E, 55 (1997), 2040.   Google Scholar

[15]

B. Lindner, Interspike interval statistics for neurons driven by colored noise,, Physical Review E, 69 (2004), 022901.  doi: 10.1103/PhysRevE.69.022901.  Google Scholar

[16]

L. M. Ricciardi and L. Sacerdote, The Ornstein-Uhlenbeck process as a model for neuronal activity,, Biological Cybernetics, 35 (1979), 1.  doi: 10.1007/BF01845839.  Google Scholar

[17]

L. M. Ricciardi, A. Di Crescenzo, V. Giorno and A. G. Nobile, An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling,, Mathematica Japonica, 50 (1999), 247.   Google Scholar

[18]

T. Schwalger, F. Droste and B. Lindner, Statistical structure of neural spiking under non-Poissonian or other non-white stimulation,, Journal of Computational Neuroscience, 39 (2015), 29.  doi: 10.1007/s10827-015-0560-x.  Google Scholar

[19]

M. Shaked and J. G. Shanthikumar, Stochastic Orders and Their Applications,, Academic Press, (1994).   Google Scholar

[20]

S. Shinomoto, Y. Sakai and S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of cortical neurons,, Neural Computation, 11 (1997), 935.   Google Scholar

[21]

T. Taillefumier and M. 0. Magnasco, A phase transition in the first passage of a Brownian process through a fluctuating boundary: Implications for neural coding,, PNAS, 110 (2013).  doi: 10.1073/pnas.1212479110.  Google Scholar

[22]

T. Taillefumier and M. Magnasco, A transition to sharp timing in stochastic leaky integrate-and-fire neurons driven by frozen noisy input,, Neural Computation, 26 (2014), 819.  doi: 10.1162/NECO_a_00577.  Google Scholar

[23]

T. Taillefumier and M. Magnasco, A fast algorithm for the first-passage times of Gauss-Markov processes with Holder continuous boundaries,, J. Stat. Phys., 140 (2010), 1130.  doi: 10.1007/s10955-010-0033-6.  Google Scholar

[24]

P. J. Thomas, A lower bound for the first passage time density of the suprathreshold Ornstein-Uhlenbeck process,, J. Appl. Probab., 48 (2011), 420.  doi: 10.1239/jap/1308662636.  Google Scholar

[25]

J. V. Toups, J. M. Fellous, P. J. Thomas, T. J. Sejnowski and P. H. Tiesinga, Multiple spike time patterns occur at bifurcation points of membrane potential dynamics,, PLoS Comput. Biol., 8 (2012), 1.  doi: 10.1371/journal.pcbi.1002615.  Google Scholar

[26]

H. C. Tuckwell, Stochastic Processes in the Neurosciences,, SIAM, (1989).  doi: 10.1137/1.9781611970159.  Google Scholar

[27]

E. Urdapilleta, Series solution to the first-passage-time problem of a Brownian motion with an exponential time-dependent drift,, J. Stat. Phys., 140 (2010), 1130.  doi: 10.1088/1751-8113/45/18/185001.  Google Scholar

show all references

References:
[1]

A. N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input,, Biological Cybernetics, 95 (2006), 1.  doi: 10.1007/s00422-006-0068-6.  Google Scholar

[2]

A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, The first passage time problem for Gauss-diffusion processes: Algorithmic approaches and applications to LIF neuronal model,, Methodol. Comput. Appl. Prob., 13 (2011), 29.  doi: 10.1007/s11009-009-9132-8.  Google Scholar

[3]

A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, On a stochastic leaky integrate-and-fire neuronal model,, Neural Computation, 22 (2010), 2558.  doi: 10.1162/NECO_a_00023.  Google Scholar

[4]

A. Buonocore, L. Caputo, E. Pirozzi and M. F. Carfora, Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons,, Math. Biosci. Eng., 11 (2014), 189.   Google Scholar

[5]

A. Buonocore, L. Caputo, A. G. Nobile and E. Pirozzi, Gauss-Markov processes in the presence of a reflecting boundary and applications in neuronal models,, Applied Mathematics and Computation, 232 (2014), 799.  doi: 10.1016/j.amc.2014.01.143.  Google Scholar

[6]

A. Buonocore, L. Caputo, A. G. Nobile and E. Pirozzi, Restricted Ornstein-Uhlenbeck process and applications in neuronal models with periodic input signals,, Journal of Computational and Applied Mathematics, 285 (2015), 59.  doi: 10.1016/j.cam.2015.01.042.  Google Scholar

[7]

A. Buonocore, L. Caputo, A. G. Nobile and E. Pirozzi, Gauss-markov processes for neuronal models including reversal potentials,, Advances in Cognitive Neurodynamics (IV), 11 (2015), 299.  doi: 10.1007/978-94-017-9548-7_42.  Google Scholar

[8]

M. J. Chacron, K. Pakdaman and A. Longtin, Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire neuron with threshold fatigue., Neural Computation, 15 (2003), 253.   Google Scholar

[9]

E. Di Nardo, A. G. Nobile, E. Pirozzi and L. M. Ricciardi, A computational approach to first passage-time problems for Gauss-Markov processes,, Adv. Appl. Prob., 33 (2001), 453.  doi: 10.1239/aap/999188324.  Google Scholar

[10]

J. M. Fellous, P. H. Tiesinga, P. J. Thomas and T. J. Sejnowski, Discovering spike patterns in neuronal responses,, The Journal of Neuroscience, 24 (2004), 2989.  doi: 10.1523/JNEUROSCI.4649-03.2004.  Google Scholar

[11]

V. Giorno and S. Spina, On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model,, Math. Bios. Eng., 11 (2014), 285.   Google Scholar

[12]

H. Kim and S. Shinomoto, Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation,, Math. Bios. Eng., 11 (2014), 49.   Google Scholar

[13]

P. Lánský and S. Ditlevsen, A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models,, Biol. Cybern., 99 (2008), 253.  doi: 10.1007/s00422-008-0237-x.  Google Scholar

[14]

P. Lánský, Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics,, Physical Review E, 55 (1997), 2040.   Google Scholar

[15]

B. Lindner, Interspike interval statistics for neurons driven by colored noise,, Physical Review E, 69 (2004), 022901.  doi: 10.1103/PhysRevE.69.022901.  Google Scholar

[16]

L. M. Ricciardi and L. Sacerdote, The Ornstein-Uhlenbeck process as a model for neuronal activity,, Biological Cybernetics, 35 (1979), 1.  doi: 10.1007/BF01845839.  Google Scholar

[17]

L. M. Ricciardi, A. Di Crescenzo, V. Giorno and A. G. Nobile, An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling,, Mathematica Japonica, 50 (1999), 247.   Google Scholar

[18]

T. Schwalger, F. Droste and B. Lindner, Statistical structure of neural spiking under non-Poissonian or other non-white stimulation,, Journal of Computational Neuroscience, 39 (2015), 29.  doi: 10.1007/s10827-015-0560-x.  Google Scholar

[19]

M. Shaked and J. G. Shanthikumar, Stochastic Orders and Their Applications,, Academic Press, (1994).   Google Scholar

[20]

S. Shinomoto, Y. Sakai and S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of cortical neurons,, Neural Computation, 11 (1997), 935.   Google Scholar

[21]

T. Taillefumier and M. 0. Magnasco, A phase transition in the first passage of a Brownian process through a fluctuating boundary: Implications for neural coding,, PNAS, 110 (2013).  doi: 10.1073/pnas.1212479110.  Google Scholar

[22]

T. Taillefumier and M. Magnasco, A transition to sharp timing in stochastic leaky integrate-and-fire neurons driven by frozen noisy input,, Neural Computation, 26 (2014), 819.  doi: 10.1162/NECO_a_00577.  Google Scholar

[23]

T. Taillefumier and M. Magnasco, A fast algorithm for the first-passage times of Gauss-Markov processes with Holder continuous boundaries,, J. Stat. Phys., 140 (2010), 1130.  doi: 10.1007/s10955-010-0033-6.  Google Scholar

[24]

P. J. Thomas, A lower bound for the first passage time density of the suprathreshold Ornstein-Uhlenbeck process,, J. Appl. Probab., 48 (2011), 420.  doi: 10.1239/jap/1308662636.  Google Scholar

[25]

J. V. Toups, J. M. Fellous, P. J. Thomas, T. J. Sejnowski and P. H. Tiesinga, Multiple spike time patterns occur at bifurcation points of membrane potential dynamics,, PLoS Comput. Biol., 8 (2012), 1.  doi: 10.1371/journal.pcbi.1002615.  Google Scholar

[26]

H. C. Tuckwell, Stochastic Processes in the Neurosciences,, SIAM, (1989).  doi: 10.1137/1.9781611970159.  Google Scholar

[27]

E. Urdapilleta, Series solution to the first-passage-time problem of a Brownian motion with an exponential time-dependent drift,, J. Stat. Phys., 140 (2010), 1130.  doi: 10.1088/1751-8113/45/18/185001.  Google Scholar

[1]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[2]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[3]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[4]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[5]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[6]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[7]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[8]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[9]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[10]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[11]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[12]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[13]

Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047

[14]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[15]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[16]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[17]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[18]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[19]

M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424

[20]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]