-
Previous Article
Fluctuation scaling in neural spike trains
- MBE Home
- This Issue
-
Next Article
Efficient information transfer by Poisson neurons
Integrator or coincidence detector --- what shapes the relation of stimulus synchrony and the operational mode of a neuron?
1. | Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus, Cyprus, Cyprus |
2. | Department of Electrical Engineering and Computer Science, Technische Universitat Berlin, 10587 Berlin, Germany |
References:
[1] |
M. Abeles, Role of the cortical neuron: integrator or coincidence detector?, Israel Journal of Medical Sciences, 18 (1982), 83-92. |
[2] |
A. Aertsen, M. Diesmann and M.-O. Gewaltig, Propagation of synchronous spiking activity in feedforward neural networks, Journal of Physiology Paris, 90 (1996), 243-247.
doi: 10.1016/S0928-4257(97)81432-5. |
[3] |
G. Bugmann, C. Christodoulou and J. G. Taylor, Role of temporal integration and fluctuation detection in the highly irregular firing of a leaky integrator neuron model with partial reset, Neural Computation, 9 (1997), 985-1000.
doi: 10.1162/neco.1997.9.5.985. |
[4] |
F. Hausdorff, Grundzüge der Mengenlehre, Verlag von Veit & Comp., Leipzig, 1914. |
[5] |
M. A. Kisley and G. L. Gerstein, The continuum of operating modes for a passive model neuron, Neural Computation, 11 (1999), 1139-1154.
doi: 10.1162/089976699300016386. |
[6] |
P. König, A. K. Engel and W. Singer, Integrator or coincidence detector? The role of the cortical neuron revisited, Trends in Neurosciences, 19 (1996), 130-137. |
[7] |
A. Koutsou, C. Christodoulou, G. Bugmann and J. Kanev, Distinguishing the causes of firing with the membrane potential slope, Neural Computation, 24 (2012), 2318-2345.
doi: 10.1162/NECO_a_00323. |
[8] |
T. Kreuz, D. Chicharro, R. G. Andrzejak, J. S. Haas and H. D. I. Abarbanel, Measuring multiple spike train synchrony, Journal of Neuroscience Methods, 183 (2009), 287-299.
doi: 10.1016/j.jneumeth.2009.06.039. |
[9] |
T. Kreuz, D. Chicharro, M. Greschner and R. G. Andrzejak, Time-resolved and time-scale adaptive measures of spike train synchrony, Journal of Neuroscience Methods, 195 (2011), 92-106.
doi: 10.1016/j.jneumeth.2010.11.020. |
[10] |
T. Kreuz, D. Chicharro, C. Houghton, R. G. Andrzejak and F. Mormann, Monitoring spike train synchrony, Journal of Neurophysiology, 109 (2013), 1457-1472.
doi: 10.1152/jn.00873.2012. |
[11] |
T. Kreuz, J. S. Haas, A. Morelli, H. D. I. Abarbanel and A. Politi, Measuring spike train synchrony, Journal of Neuroscience Methods, 165 (2007), 151-161.
doi: 10.1016/j.jneumeth.2007.05.031. |
[12] |
D. Pompeiu, Sur la continuité des fonctions de variables complexes, Annales de la Faculté des Sciences de Toulouse, 7 (1905), 265-315.
doi: 10.5802/afst.226. |
[13] |
S. Ratté, M. Lankarany, Y.-A. Rho, A. Patterson and S. A. Prescott, Subthreshold membrane currents confer distinct tuning properties that enable neurons to encode the integral or derivative of their input, Frontiers in Cellular Neuroscience, 8 (2014), 452. |
[14] |
M. Rudolph and A. Destexhe, Tuning neocortical pyramidal neurons between integrators and coincidence detectors, Journal of Computational Neuroscience, 14 (2003), 239-251. |
[15] |
C. V. Rusu and R. V. Florian, A new class of metrics for spike trains, Neural Computation, 26 (2014), 306-348.
doi: 10.1162/NECO_a_00545. |
[16] |
M. N. Shadlen and W. T. Newsome, Noise, neural codes and cortical organization, Current Opinion in Neurobiology, 4 (1994), 569-579.
doi: 10.1016/0959-4388(94)90059-0. |
[17] |
M. N. Shadlen and W. T. Newsome, The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding, Journal of Neuroscience, 18 (1998), 3870-3896. |
[18] |
W. R. Softky and C. Koch, Cortical cells should fire regularly, but do not, Neural Computation, 4 (1992), 643-646.
doi: 10.1162/neco.1992.4.5.643. |
[19] |
W. R. Softky and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs, Journal of Neuroscience, 13 (1993), 334-350. |
[20] |
J. D. Victor, Spike train metrics, Current Opinion in Neurobiology, 15 (2005), 585-592.
doi: 10.1016/j.conb.2005.08.002. |
[21] |
J. D. Victor and K. P. Purpura, Metric-space analysis of spike trains: Theory, algorithms and application, Network: Computation in Neural Systems, 8 (1997), 127-164.
doi: 10.1088/0954-898X_8_2_003. |
[22] |
J. D. Victor and K. P. Purpura, Spike metrics, in Analysis of Parallel Spike Trains (eds. S. Grün and S. Rotter), Springer Series in Computational Neuroscience, 7, Springer US, Boston, MA, 2010, 129-156.
doi: 10.1007/978-1-4419-5675-0_7. |
show all references
References:
[1] |
M. Abeles, Role of the cortical neuron: integrator or coincidence detector?, Israel Journal of Medical Sciences, 18 (1982), 83-92. |
[2] |
A. Aertsen, M. Diesmann and M.-O. Gewaltig, Propagation of synchronous spiking activity in feedforward neural networks, Journal of Physiology Paris, 90 (1996), 243-247.
doi: 10.1016/S0928-4257(97)81432-5. |
[3] |
G. Bugmann, C. Christodoulou and J. G. Taylor, Role of temporal integration and fluctuation detection in the highly irregular firing of a leaky integrator neuron model with partial reset, Neural Computation, 9 (1997), 985-1000.
doi: 10.1162/neco.1997.9.5.985. |
[4] |
F. Hausdorff, Grundzüge der Mengenlehre, Verlag von Veit & Comp., Leipzig, 1914. |
[5] |
M. A. Kisley and G. L. Gerstein, The continuum of operating modes for a passive model neuron, Neural Computation, 11 (1999), 1139-1154.
doi: 10.1162/089976699300016386. |
[6] |
P. König, A. K. Engel and W. Singer, Integrator or coincidence detector? The role of the cortical neuron revisited, Trends in Neurosciences, 19 (1996), 130-137. |
[7] |
A. Koutsou, C. Christodoulou, G. Bugmann and J. Kanev, Distinguishing the causes of firing with the membrane potential slope, Neural Computation, 24 (2012), 2318-2345.
doi: 10.1162/NECO_a_00323. |
[8] |
T. Kreuz, D. Chicharro, R. G. Andrzejak, J. S. Haas and H. D. I. Abarbanel, Measuring multiple spike train synchrony, Journal of Neuroscience Methods, 183 (2009), 287-299.
doi: 10.1016/j.jneumeth.2009.06.039. |
[9] |
T. Kreuz, D. Chicharro, M. Greschner and R. G. Andrzejak, Time-resolved and time-scale adaptive measures of spike train synchrony, Journal of Neuroscience Methods, 195 (2011), 92-106.
doi: 10.1016/j.jneumeth.2010.11.020. |
[10] |
T. Kreuz, D. Chicharro, C. Houghton, R. G. Andrzejak and F. Mormann, Monitoring spike train synchrony, Journal of Neurophysiology, 109 (2013), 1457-1472.
doi: 10.1152/jn.00873.2012. |
[11] |
T. Kreuz, J. S. Haas, A. Morelli, H. D. I. Abarbanel and A. Politi, Measuring spike train synchrony, Journal of Neuroscience Methods, 165 (2007), 151-161.
doi: 10.1016/j.jneumeth.2007.05.031. |
[12] |
D. Pompeiu, Sur la continuité des fonctions de variables complexes, Annales de la Faculté des Sciences de Toulouse, 7 (1905), 265-315.
doi: 10.5802/afst.226. |
[13] |
S. Ratté, M. Lankarany, Y.-A. Rho, A. Patterson and S. A. Prescott, Subthreshold membrane currents confer distinct tuning properties that enable neurons to encode the integral or derivative of their input, Frontiers in Cellular Neuroscience, 8 (2014), 452. |
[14] |
M. Rudolph and A. Destexhe, Tuning neocortical pyramidal neurons between integrators and coincidence detectors, Journal of Computational Neuroscience, 14 (2003), 239-251. |
[15] |
C. V. Rusu and R. V. Florian, A new class of metrics for spike trains, Neural Computation, 26 (2014), 306-348.
doi: 10.1162/NECO_a_00545. |
[16] |
M. N. Shadlen and W. T. Newsome, Noise, neural codes and cortical organization, Current Opinion in Neurobiology, 4 (1994), 569-579.
doi: 10.1016/0959-4388(94)90059-0. |
[17] |
M. N. Shadlen and W. T. Newsome, The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding, Journal of Neuroscience, 18 (1998), 3870-3896. |
[18] |
W. R. Softky and C. Koch, Cortical cells should fire regularly, but do not, Neural Computation, 4 (1992), 643-646.
doi: 10.1162/neco.1992.4.5.643. |
[19] |
W. R. Softky and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs, Journal of Neuroscience, 13 (1993), 334-350. |
[20] |
J. D. Victor, Spike train metrics, Current Opinion in Neurobiology, 15 (2005), 585-592.
doi: 10.1016/j.conb.2005.08.002. |
[21] |
J. D. Victor and K. P. Purpura, Metric-space analysis of spike trains: Theory, algorithms and application, Network: Computation in Neural Systems, 8 (1997), 127-164.
doi: 10.1088/0954-898X_8_2_003. |
[22] |
J. D. Victor and K. P. Purpura, Spike metrics, in Analysis of Parallel Spike Trains (eds. S. Grün and S. Rotter), Springer Series in Computational Neuroscience, 7, Springer US, Boston, MA, 2010, 129-156.
doi: 10.1007/978-1-4419-5675-0_7. |
[1] |
Xiangying Meng, Gemma Huguet, John Rinzel. Type III excitability, slope sensitivity and coincidence detection. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2729-2757. doi: 10.3934/dcds.2012.32.2729 |
[2] |
Aldana M. González Montoro, Ricardo Cao, Christel Faes, Geert Molenberghs, Nelson Espinosa, Javier Cudeiro, Jorge Mariño. Cross nearest-spike interval based method to measure synchrony dynamics. Mathematical Biosciences & Engineering, 2014, 11 (1) : 27-48. doi: 10.3934/mbe.2014.11.27 |
[3] |
Moisey Guysinsky, Serge Yaskolko. Coincidence of various dimensions associated with metrics and measures on metric spaces. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 591-603. doi: 10.3934/dcds.1997.3.591 |
[4] |
Giuseppe D'Onofrio, Enrica Pirozzi. Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences & Engineering, 2016, 13 (3) : 495-507. doi: 10.3934/mbe.2016003 |
[5] |
Shigeki Akiyama. Strong coincidence and overlap coincidence. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5223-5230. doi: 10.3934/dcds.2016027 |
[6] |
Maide Bucolo, Federica Di Grazia, Luigi Fortuna, Mattia Frasca, Francesca Sapuppo. An environment for complex behaviour detection in bio-potential experiments. Mathematical Biosciences & Engineering, 2008, 5 (2) : 261-276. doi: 10.3934/mbe.2008.5.261 |
[7] |
Yuan Li, Ruxia Zhang, Yi Zhang, Bo Yang. Sliding mode control for uncertain T-S fuzzy systems with input and state delays. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 345-354. doi: 10.3934/naco.2020006 |
[8] |
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control and Related Fields, 2021, 11 (4) : 905-934. doi: 10.3934/mcrf.2020051 |
[9] |
Lluís Alsedà, Michał Misiurewicz. Semiconjugacy to a map of a constant slope. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3403-3413. doi: 10.3934/dcdsb.2015.20.3403 |
[10] |
Chol-Ung Choe, Thomas Dahms, Philipp Hövel, Eckehard Schöll. Control of synchrony by delay coupling in complex networks. Conference Publications, 2011, 2011 (Special) : 292-301. doi: 10.3934/proc.2011.2011.292 |
[11] |
Antonio Tribuzio. Perturbations of minimizing movements and curves of maximal slope. Networks and Heterogeneous Media, 2018, 13 (3) : 423-448. doi: 10.3934/nhm.2018019 |
[12] |
Samuel Roth. Constant slope models for finitely generated maps. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2541-2554. doi: 10.3934/dcds.2018106 |
[13] |
David Li-Bland, Pavol Ševera. Integration of exact Courant algebroids. Electronic Research Announcements, 2012, 19: 58-76. doi: 10.3934/era.2012.19.58 |
[14] |
M. M. Rao. Integration with vector valued measures. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5429-5440. doi: 10.3934/dcds.2013.33.5429 |
[15] |
Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517 |
[16] |
Nathan Albin, Nethali Fernando, Pietro Poggi-Corradini. Modulus metrics on networks. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 1-17. doi: 10.3934/dcdsb.2018161 |
[17] |
Louis Tebou. Simultaneous stabilization of a system of interacting plate and membrane. Evolution Equations and Control Theory, 2013, 2 (1) : 153-172. doi: 10.3934/eect.2013.2.153 |
[18] |
Giovanni Alessandrini, Elio Cabib. Determining the anisotropic traction state in a membrane by boundary measurements. Inverse Problems and Imaging, 2007, 1 (3) : 437-442. doi: 10.3934/ipi.2007.1.437 |
[19] |
Monika Muszkieta. A variational approach to edge detection. Inverse Problems and Imaging, 2016, 10 (2) : 499-517. doi: 10.3934/ipi.2016009 |
[20] |
Michael Dellnitz, O. Junge, B Thiere. The numerical detection of connecting orbits. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 125-135. doi: 10.3934/dcdsb.2001.1.125 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]