2016, 13(3): 569-578. doi: 10.3934/mbe.2016008

A model based rule for selecting spiking thresholds in neuron models

1. 

Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark

Received  February 2015 Revised  November 2015 Published  January 2016

Determining excitability thresholds in neuronal models is of high interest due to its applicability in separating spiking from non-spiking phases of neuronal membrane potential processes. However, excitability thresholds are known to depend on various auxiliary variables, including any conductance or gating variables. Such dependences pose as a double-edged sword; they are natural consequences of the complexity of the model, but proves difficult to apply in practice, since gating variables are rarely measured.
    In this paper a technique for finding excitability thresholds, based on the local behaviour of the flow in dynamical systems, is presented. The technique incorporates the dynamics of the auxiliary variables, yet only produces thresholds for the membrane potential. The method is applied to several classical neuron models and the threshold's dependence upon external parameters is studied, along with a general evaluation of the technique.
Citation: Frederik Riis Mikkelsen. A model based rule for selecting spiking thresholds in neuron models. Mathematical Biosciences & Engineering, 2016, 13 (3) : 569-578. doi: 10.3934/mbe.2016008
References:
[1]

L. Abbott and T. Kepler, Model neurons: From Hodgkin-Huxley to Hopfield,, Lect. Notes Phys., 368 (1990).   Google Scholar

[2]

J. A. Connor and C. F. Stevens, Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma,, J. Physiol., 213 (1971), 31.  doi: 10.1113/jphysiol.1971.sp009366.  Google Scholar

[3]

P. Dayan and L. Abbott, Theoretical Neuroscience - Computational and Mathematical Modeling of Neural Systems,, Computational Neuroscience, (2001).   Google Scholar

[4]

M. Desroches, M. Krupa and S. Rodrigues, Inflection, canards and excitability threshold in neuronal models,, J. Math. Biol., 67 (2012), 989.  doi: 10.1007/s00285-012-0576-z.  Google Scholar

[5]

S. Ditlevsen and P. Greenwood, The morris-lecar neuron model embeds a leaky integrate-and-fire model,, J. Math. Biol., 67 (2013), 239.  doi: 10.1007/s00285-012-0552-7.  Google Scholar

[6]

R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[7]

J. Ginoux and B. Rossetto, Differential geometry and mechanics: Applications to chaotic dynamical systems,, Int. J. Bifurcat. Chaos, 16 (2006), 887.  doi: 10.1142/S0218127406015192.  Google Scholar

[8]

A. Hodgkin and A. Huxley, A quantitative description of the membrane current and application to conduction and excitation in nerve,, J. Physiol., 117 (1952), 500.   Google Scholar

[9]

E. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,, The MIT Press, (2007).   Google Scholar

[10]

T. Kepler, L. Abbott and E. Marder, Membranes with the same ion channel populations but different excitabilities,, Biol. Cybern., 66 (1992).   Google Scholar

[11]

V. I. Krinsky and Yu. M. Kokoz, Analysis of equations of excitable membranes I. Reduction of the Hodgkin-Huxley equations to a second order system,, Biofizika, 18 (1973).   Google Scholar

[12]

C. Meunier, Two and three dimensional reductions of the Hodgkin-Huxley system: Separation of time scales and bifurcations,, Biol. Cybern., 67 (1992), 461.  doi: 10.1007/BF00200990.  Google Scholar

[13]

C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber,, Biophys. J., 35 (1981), 193.  doi: 10.1016/S0006-3495(81)84782-0.  Google Scholar

[14]

J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon,, Proc. IRE, 50 (1962), 2061.  doi: 10.1109/JRPROC.1962.288235.  Google Scholar

[15]

M. Okuda, New method of nonlinear analysis for shaping and threshold actions,, J. Phys. Soc. Jpn., 41 (1976), 1815.  doi: 10.1143/JPSJ.41.1815.  Google Scholar

[16]

B. Peng, V. Gaspar and K. Showalter, False bifurcations in chemical systems: Canards,, Phil. Trans. R Soc. Lond. A, 337 (1991), 275.  doi: 10.1098/rsta.1991.0123.  Google Scholar

[17]

L. Perko, Differential Equations and Dynamical Systems,, $3^{rd}$ edition, (2000).   Google Scholar

[18]

J. Platkiewicz and R. Brette, A threshold equation for action potential initiation,, PLoS Comput. Biol., 6 (2010).  doi: 10.1371/journal.pcbi.1000850.  Google Scholar

[19]

M. Sekerli, C. Del Negro, R. Lee and R. Butera, Estimating action potential thresholds from neuronal time-series: New metrics and evaluation of methodologies,, IEEE T. Bio. Med. Eng., 51 (2004), 1665.  doi: 10.1109/TBME.2004.827531.  Google Scholar

[20]

A. Tonnelier, Threshold curve for the excitability of bidimensional spiking neurons,, Phys. Rev. E, 90 (2014).  doi: 10.1103/PhysRevE.90.022701.  Google Scholar

[21]

M. Wechselberge, J. Mitry and J. Rinzel, Canard theory and excitability,, in Nonautonomous Dynamical Systems in the Life Sciences, (2102), 89.  doi: 10.1007/978-3-319-03080-7_3.  Google Scholar

show all references

References:
[1]

L. Abbott and T. Kepler, Model neurons: From Hodgkin-Huxley to Hopfield,, Lect. Notes Phys., 368 (1990).   Google Scholar

[2]

J. A. Connor and C. F. Stevens, Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma,, J. Physiol., 213 (1971), 31.  doi: 10.1113/jphysiol.1971.sp009366.  Google Scholar

[3]

P. Dayan and L. Abbott, Theoretical Neuroscience - Computational and Mathematical Modeling of Neural Systems,, Computational Neuroscience, (2001).   Google Scholar

[4]

M. Desroches, M. Krupa and S. Rodrigues, Inflection, canards and excitability threshold in neuronal models,, J. Math. Biol., 67 (2012), 989.  doi: 10.1007/s00285-012-0576-z.  Google Scholar

[5]

S. Ditlevsen and P. Greenwood, The morris-lecar neuron model embeds a leaky integrate-and-fire model,, J. Math. Biol., 67 (2013), 239.  doi: 10.1007/s00285-012-0552-7.  Google Scholar

[6]

R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[7]

J. Ginoux and B. Rossetto, Differential geometry and mechanics: Applications to chaotic dynamical systems,, Int. J. Bifurcat. Chaos, 16 (2006), 887.  doi: 10.1142/S0218127406015192.  Google Scholar

[8]

A. Hodgkin and A. Huxley, A quantitative description of the membrane current and application to conduction and excitation in nerve,, J. Physiol., 117 (1952), 500.   Google Scholar

[9]

E. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,, The MIT Press, (2007).   Google Scholar

[10]

T. Kepler, L. Abbott and E. Marder, Membranes with the same ion channel populations but different excitabilities,, Biol. Cybern., 66 (1992).   Google Scholar

[11]

V. I. Krinsky and Yu. M. Kokoz, Analysis of equations of excitable membranes I. Reduction of the Hodgkin-Huxley equations to a second order system,, Biofizika, 18 (1973).   Google Scholar

[12]

C. Meunier, Two and three dimensional reductions of the Hodgkin-Huxley system: Separation of time scales and bifurcations,, Biol. Cybern., 67 (1992), 461.  doi: 10.1007/BF00200990.  Google Scholar

[13]

C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber,, Biophys. J., 35 (1981), 193.  doi: 10.1016/S0006-3495(81)84782-0.  Google Scholar

[14]

J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon,, Proc. IRE, 50 (1962), 2061.  doi: 10.1109/JRPROC.1962.288235.  Google Scholar

[15]

M. Okuda, New method of nonlinear analysis for shaping and threshold actions,, J. Phys. Soc. Jpn., 41 (1976), 1815.  doi: 10.1143/JPSJ.41.1815.  Google Scholar

[16]

B. Peng, V. Gaspar and K. Showalter, False bifurcations in chemical systems: Canards,, Phil. Trans. R Soc. Lond. A, 337 (1991), 275.  doi: 10.1098/rsta.1991.0123.  Google Scholar

[17]

L. Perko, Differential Equations and Dynamical Systems,, $3^{rd}$ edition, (2000).   Google Scholar

[18]

J. Platkiewicz and R. Brette, A threshold equation for action potential initiation,, PLoS Comput. Biol., 6 (2010).  doi: 10.1371/journal.pcbi.1000850.  Google Scholar

[19]

M. Sekerli, C. Del Negro, R. Lee and R. Butera, Estimating action potential thresholds from neuronal time-series: New metrics and evaluation of methodologies,, IEEE T. Bio. Med. Eng., 51 (2004), 1665.  doi: 10.1109/TBME.2004.827531.  Google Scholar

[20]

A. Tonnelier, Threshold curve for the excitability of bidimensional spiking neurons,, Phys. Rev. E, 90 (2014).  doi: 10.1103/PhysRevE.90.022701.  Google Scholar

[21]

M. Wechselberge, J. Mitry and J. Rinzel, Canard theory and excitability,, in Nonautonomous Dynamical Systems in the Life Sciences, (2102), 89.  doi: 10.1007/978-3-319-03080-7_3.  Google Scholar

[1]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[2]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[3]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[4]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[5]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[6]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[7]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[8]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[9]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[10]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[11]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[12]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[16]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[17]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[18]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[19]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[20]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]