2016, 13(4): 631-652. doi: 10.3934/mbe.2016012

Competition for a single resource and coexistence of several species in the chemostat

1. 

Université de Tunis El Manar, ENIT, LAMSIN, BP 37, Le Belvédère, 1002 Tunis, Tunisia, Tunisia

2. 

IRSTEA, UMR Itap, 361 rue Jean-François Breton, 34196 Montpellier, France, and Université de Haute Alsace, LMIA, 4 rue des frères Lumière, 68093 Mulhouse, France

Received  April 2015 Revised  March 2016 Published  May 2016

We study a model of the chemostat with several species in competition for a single resource. We take into account the intra-specific interactions between individuals of the same population of micro-organisms and we assume that the growth rates are increasing and the dilution rates are distinct. Using the concept of steady-state characteristics, we present a geometric characterization of the existence and stability of all equilibria. Moreover, we provide necessary and sufficient conditions on the control parameters of the system to have a positive equilibrium. Using a Lyapunov function, we give a global asymptotic stability result for the competition model of several species. The operating diagram describes the asymptotic behavior of this model with respect to control parameters and illustrates the effect of the intra-specific competition on the coexistence region of the species.
Citation: Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012
References:
[1]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence,, J. Theor. Biol., 139 (1989), 311.  doi: 10.1016/S0022-5193(89)80211-5.  Google Scholar

[2]

C. K. Essajee and R. D. Tanner, The effect of extracellular variables on the stability of the continuous baker's yeast-ethanol fermentation process,, Process Biochem., 14 (1979), 16.   Google Scholar

[3]

R. Fekih-Salem, Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat,, Ph.D thesis, (2013).   Google Scholar

[4]

R. Fekih-Salem, J. Harmand, C. Lobry, A. Rapaport and T. Sari, Extensions of the chemostat model with flocculation,, J. Math. Anal. Appl., 397 (2013), 292.  doi: 10.1016/j.jmaa.2012.07.055.  Google Scholar

[5]

R. Fekih-Salem, T. Sari and N. Abdellatif, Sur un modèle de compétition et de coexistence dans le chémostat,, ARIMA J., 14 (2011), 15.   Google Scholar

[6]

B. Haegeman, C. Lobry and J. Harmand, Modeling bacteria flocculation as density-dependent growth,, AIChE J., 53 (2007), 535.  doi: 10.1002/aic.11077.  Google Scholar

[7]

B. Haegeman and A. Rapaport, How flocculation can explain coexistence in the chemostat,, J. Biol. Dyn., 2 (2008), 1.  doi: 10.1080/17513750801942537.  Google Scholar

[8]

J. K. Hale and A. S. Somolinas, Competition for fluctuating nutrient,, J. Math. Biol., 18 (1983), 255.  doi: 10.1007/BF00276091.  Google Scholar

[9]

J. Harmand and J. J. Godon, Density-dependent kinetics models for a simple description of complex phenomena in macroscopic mass-balance modeling of bioreactors,, Ecol. Modell., 200 (2007), 393.  doi: 10.1016/j.ecolmodel.2006.08.012.  Google Scholar

[10]

S. B. Hsu, A competition model for a seasonally fluctuating nutrient,, J. Math. Biol., 9 (1980), 115.  doi: 10.1007/BF00275917.  Google Scholar

[11]

P. De Leenheer, D. Angeli and E. D. Sontag, Crowding effects promote coexistence in the chemostat,, J. Math. Anal. Appl., 319 (2006), 48.  doi: 10.1016/j.jmaa.2006.02.036.  Google Scholar

[12]

C. Lobry and J. Harmand, A new hypothesis to explain the coexistence of $n$ species in the presence of a single resource,, C. R. Biol., 329 (2006), 40.  doi: 10.1016/j.crvi.2005.10.004.  Google Scholar

[13]

C. Lobry and F. Mazenc, Effect on persistence of intra-specific competition in competition models,, Electron. J. Diff. Eqns., 125 (2007), 1.   Google Scholar

[14]

C. Lobry, F. Mazenc and A. Rapaport, Persistence in ecological models of competition for a single resource,, C. R. Acad. Sci. Paris, 340 (2005), 199.  doi: 10.1016/j.crma.2004.12.021.  Google Scholar

[15]

C. Lobry, A. Rapaport and F. Mazenc, Sur un modèle densité-dépendant de compétition pour une ressource,, C. R. Biol., 329 (2006), 63.  doi: 10.1016/j.crvi.2005.11.004.  Google Scholar

[16]

A. Rapaport and J. Harmand, Biological control of the chemostat with nonmonotonic response and different removal rates,, Math. Biosci. Eng., 5 (2008), 539.  doi: 10.3934/mbe.2008.5.539.  Google Scholar

[17]

S. Ruan, A. Ardito, P. Ricciardi and D. L. DeAngelis, Coexistence in competition models with density-dependent mortality,, C. R. Biol., 330 (2007), 845.  doi: 10.1016/j.crvi.2007.10.004.  Google Scholar

[18]

T. Sari, A Lyapunov function for the chemostat with variable yields,, C. R. Acad. Sci. Paris Ser. I, 348 (2010), 747.  doi: 10.1016/j.crma.2010.06.008.  Google Scholar

[19]

T. Sari, Competitive exclusion for chemostat equations with variable yields,, Acta Appl. Math., 123 (2013), 201.  doi: 10.1007/s10440-012-9761-8.  Google Scholar

[20]

T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields,, Math. Biosci. Eng., 8 (2011), 827.  doi: 10.3934/mbe.2011.8.827.  Google Scholar

[21]

H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[22]

G. Stephanopoulos, A. G. Frederickson and R. Aris, The growth of competing microbial populations in a CSTR with periodically varying inputs,, AIChE J., 25 (1979), 863.  doi: 10.1002/aic.690250515.  Google Scholar

[23]

G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates,, SIAM J. Appl. Math., 52 (1992), 222.  doi: 10.1137/0152012.  Google Scholar

[24]

G. S. K. Wolkowicz and Z. Lu, Direct interference on competition in a chemostat,, J. Biomath, 13 (1998), 282.   Google Scholar

[25]

G. S. K. Wolkowicz and X. Q. Zhao, $N$-species competition in a periodic chemostat,, Differential Integral Equations, 11 (1998), 465.   Google Scholar

show all references

References:
[1]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence,, J. Theor. Biol., 139 (1989), 311.  doi: 10.1016/S0022-5193(89)80211-5.  Google Scholar

[2]

C. K. Essajee and R. D. Tanner, The effect of extracellular variables on the stability of the continuous baker's yeast-ethanol fermentation process,, Process Biochem., 14 (1979), 16.   Google Scholar

[3]

R. Fekih-Salem, Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat,, Ph.D thesis, (2013).   Google Scholar

[4]

R. Fekih-Salem, J. Harmand, C. Lobry, A. Rapaport and T. Sari, Extensions of the chemostat model with flocculation,, J. Math. Anal. Appl., 397 (2013), 292.  doi: 10.1016/j.jmaa.2012.07.055.  Google Scholar

[5]

R. Fekih-Salem, T. Sari and N. Abdellatif, Sur un modèle de compétition et de coexistence dans le chémostat,, ARIMA J., 14 (2011), 15.   Google Scholar

[6]

B. Haegeman, C. Lobry and J. Harmand, Modeling bacteria flocculation as density-dependent growth,, AIChE J., 53 (2007), 535.  doi: 10.1002/aic.11077.  Google Scholar

[7]

B. Haegeman and A. Rapaport, How flocculation can explain coexistence in the chemostat,, J. Biol. Dyn., 2 (2008), 1.  doi: 10.1080/17513750801942537.  Google Scholar

[8]

J. K. Hale and A. S. Somolinas, Competition for fluctuating nutrient,, J. Math. Biol., 18 (1983), 255.  doi: 10.1007/BF00276091.  Google Scholar

[9]

J. Harmand and J. J. Godon, Density-dependent kinetics models for a simple description of complex phenomena in macroscopic mass-balance modeling of bioreactors,, Ecol. Modell., 200 (2007), 393.  doi: 10.1016/j.ecolmodel.2006.08.012.  Google Scholar

[10]

S. B. Hsu, A competition model for a seasonally fluctuating nutrient,, J. Math. Biol., 9 (1980), 115.  doi: 10.1007/BF00275917.  Google Scholar

[11]

P. De Leenheer, D. Angeli and E. D. Sontag, Crowding effects promote coexistence in the chemostat,, J. Math. Anal. Appl., 319 (2006), 48.  doi: 10.1016/j.jmaa.2006.02.036.  Google Scholar

[12]

C. Lobry and J. Harmand, A new hypothesis to explain the coexistence of $n$ species in the presence of a single resource,, C. R. Biol., 329 (2006), 40.  doi: 10.1016/j.crvi.2005.10.004.  Google Scholar

[13]

C. Lobry and F. Mazenc, Effect on persistence of intra-specific competition in competition models,, Electron. J. Diff. Eqns., 125 (2007), 1.   Google Scholar

[14]

C. Lobry, F. Mazenc and A. Rapaport, Persistence in ecological models of competition for a single resource,, C. R. Acad. Sci. Paris, 340 (2005), 199.  doi: 10.1016/j.crma.2004.12.021.  Google Scholar

[15]

C. Lobry, A. Rapaport and F. Mazenc, Sur un modèle densité-dépendant de compétition pour une ressource,, C. R. Biol., 329 (2006), 63.  doi: 10.1016/j.crvi.2005.11.004.  Google Scholar

[16]

A. Rapaport and J. Harmand, Biological control of the chemostat with nonmonotonic response and different removal rates,, Math. Biosci. Eng., 5 (2008), 539.  doi: 10.3934/mbe.2008.5.539.  Google Scholar

[17]

S. Ruan, A. Ardito, P. Ricciardi and D. L. DeAngelis, Coexistence in competition models with density-dependent mortality,, C. R. Biol., 330 (2007), 845.  doi: 10.1016/j.crvi.2007.10.004.  Google Scholar

[18]

T. Sari, A Lyapunov function for the chemostat with variable yields,, C. R. Acad. Sci. Paris Ser. I, 348 (2010), 747.  doi: 10.1016/j.crma.2010.06.008.  Google Scholar

[19]

T. Sari, Competitive exclusion for chemostat equations with variable yields,, Acta Appl. Math., 123 (2013), 201.  doi: 10.1007/s10440-012-9761-8.  Google Scholar

[20]

T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields,, Math. Biosci. Eng., 8 (2011), 827.  doi: 10.3934/mbe.2011.8.827.  Google Scholar

[21]

H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[22]

G. Stephanopoulos, A. G. Frederickson and R. Aris, The growth of competing microbial populations in a CSTR with periodically varying inputs,, AIChE J., 25 (1979), 863.  doi: 10.1002/aic.690250515.  Google Scholar

[23]

G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates,, SIAM J. Appl. Math., 52 (1992), 222.  doi: 10.1137/0152012.  Google Scholar

[24]

G. S. K. Wolkowicz and Z. Lu, Direct interference on competition in a chemostat,, J. Biomath, 13 (1998), 282.   Google Scholar

[25]

G. S. K. Wolkowicz and X. Q. Zhao, $N$-species competition in a periodic chemostat,, Differential Integral Equations, 11 (1998), 465.   Google Scholar

[1]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (0)

[Back to Top]