2016, 13(4): 653-671. doi: 10.3934/mbe.2016013

An adaptive feedback methodology for determining information content in stable population studies

1. 

Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC 27695-8212

2. 

Undergraduate Research Opportunities Center (UROC), California State University, Monterey Bay, United States

3. 

Center for Research in Scienti c Computation, North Carolina State University, Raleigh, NC 27695-8212, United States

4. 

Ecotoxicology Program, WSU Puyallup Research, Extension Center, Puyallup, WA 98371-4998, United States

Received  November 2015 Revised  February 2016 Published  May 2016

We develop statistical and mathematical based methodologies for determining (as the experiment progresses) the amount of information required to complete the estimation of stable population parameters with pre-specified levels of confidence. We do this in the context of life table models and data for growth/death for three species of Daphniids as investigated by J. Stark and J. Banks [17]. The ideas developed here also have wide application in the health and social sciences where experimental data are often expensive as well as difficult to obtain.
Citation: H. T. Banks, John E. Banks, R. A. Everett, John D. Stark. An adaptive feedback methodology for determining information content in stable population studies. Mathematical Biosciences & Engineering, 2016, 13 (4) : 653-671. doi: 10.3934/mbe.2016013
References:
[1]

K. Adoteye, H. T. Banks, K. Cross, S. Eytcheson, K. B. Flores, G. A. LeBlanc, T. Nguyen, C. Ross, E. Smith, M. Stemkovski and S. Stokely, Statistical validation of structured population models for Daphnia magna,, Mathematical Biosciences, 266 (2015), 73.  doi: 10.1016/j.mbs.2015.06.003.  Google Scholar

[2]

K. Adoteye, H. T. Banks, K. B. Flores and G. A. LeBlanc, Estimation of time-varying mortality rates using continuous models for Daphnia magna,, Applied Mathematical Letters, 44 (2015), 12.  doi: 10.1016/j.aml.2014.12.014.  Google Scholar

[3]

H. T. Banks, J. E. Banks, L. K. Dick and J. D. Stark, Estimation of dynamic rate parameters in insect populations undergoing sublethal exposure to pesticides,, Bulletin of Mathematical Biology, 69 (2007), 2139.  doi: 10.1007/s11538-007-9207-z.  Google Scholar

[4]

H. T. Banks, J. E. Banks, R. Everett and J. Stark, An Adaptive Feedback Methodology for Determining Information Content in Population Studies,, CRSC-TR15-12, (2015), 15.   Google Scholar

[5]

H. T. Banks, J. E. Banks, S. J. Joyner and J. D. Stark, Dynamic models for insect mortality due to exposure to insecticides,, Mathematical and Computer Modeling, 48 (2008), 316.  doi: 10.1016/j.mcm.2007.10.005.  Google Scholar

[6]

J. E. Banks, L. K. Dick, H. T. Banks and J. D. Stark, Time-varying vital rates in ecotoxicology: Selective pesticides and aphid population dynamics,, Ecological Modeling, 210 (2008), 155.  doi: 10.1016/j.ecolmodel.2007.07.022.  Google Scholar

[7]

H. T. Banks, S. Hu and W. C. Thompson, Modeling and Inverse Problems in the Presence of Uncertainty,, CRC Press, (2014).   Google Scholar

[8]

H. T. Banks and H. T. Tran, Mathematical and Experimental Modeling of Physical and Biological Processes,, CRC Press, (2009).   Google Scholar

[9]

J. R. Carey, Applied Demography for Biologists with Special Emphasis on Insects,, Oxford University Press, (1993).   Google Scholar

[10]

V. E. Forbes and P. Calow, Is the per capita rate of increase a good measure of population-level effects in ecotoxicology?, Environmental Toxicology and Chemistry, 18 (1999), 1544.  doi: 10.1002/etc.5620180729.  Google Scholar

[11]

V. E. Forbes and P. Calow, Extrapolation in ecological risk assessment: Balancing pragmatism and precaution in chemical controls legislation,, Bioscience, 52 (2002), 249.   Google Scholar

[12]

V. E. Forbes and P. Calow, Population growth rate as a basis for ecological risk assessment of toxic chemicals,, Philosophical Transaction of the Royal Society, 357 (2002), 1299.   Google Scholar

[13]

N. Hanson and J. D. Stark, A comparison of simple and complex population models to reduce uncertainty in ecological risk assessments of chemicals: Example with three species of Daphnia,, Ecotoxicology, 20 (2011), 1268.  doi: 10.1007/s10646-011-0675-4.  Google Scholar

[14]

N. Hanson and J. D. Stark, Utility of population models to reduce uncertainty and increase value relevance in ecological risk assessments of pesticides: An example based on acute mortality data for Daphnids,, Integrated Environmental Assessment and Management, 8 (2012), 262.  doi: 10.1002/ieam.272.  Google Scholar

[15]

U. Hommen, J. M. Baveco, N. Galic and P. J. van den Brink, Potential application of ecological models in the European environmental risk assessment of chemicals I: review of protection goals in EU directives and regulations,, Integrated Environmental Assessment and Management, 6 (2010), 325.  doi: 10.1002/ieam.69.  Google Scholar

[16]

M. Kot, Elements of Mathematical Ecology,, Cambridge University Press, (2001).  doi: 10.1017/CBO9780511608520.  Google Scholar

[17]

J. D. Stark and J. E. Banks, Developing Demographic Toxicity Data: Optimizing Effort for Predicting Population Outcomes,, PeerJ, (2015).   Google Scholar

show all references

References:
[1]

K. Adoteye, H. T. Banks, K. Cross, S. Eytcheson, K. B. Flores, G. A. LeBlanc, T. Nguyen, C. Ross, E. Smith, M. Stemkovski and S. Stokely, Statistical validation of structured population models for Daphnia magna,, Mathematical Biosciences, 266 (2015), 73.  doi: 10.1016/j.mbs.2015.06.003.  Google Scholar

[2]

K. Adoteye, H. T. Banks, K. B. Flores and G. A. LeBlanc, Estimation of time-varying mortality rates using continuous models for Daphnia magna,, Applied Mathematical Letters, 44 (2015), 12.  doi: 10.1016/j.aml.2014.12.014.  Google Scholar

[3]

H. T. Banks, J. E. Banks, L. K. Dick and J. D. Stark, Estimation of dynamic rate parameters in insect populations undergoing sublethal exposure to pesticides,, Bulletin of Mathematical Biology, 69 (2007), 2139.  doi: 10.1007/s11538-007-9207-z.  Google Scholar

[4]

H. T. Banks, J. E. Banks, R. Everett and J. Stark, An Adaptive Feedback Methodology for Determining Information Content in Population Studies,, CRSC-TR15-12, (2015), 15.   Google Scholar

[5]

H. T. Banks, J. E. Banks, S. J. Joyner and J. D. Stark, Dynamic models for insect mortality due to exposure to insecticides,, Mathematical and Computer Modeling, 48 (2008), 316.  doi: 10.1016/j.mcm.2007.10.005.  Google Scholar

[6]

J. E. Banks, L. K. Dick, H. T. Banks and J. D. Stark, Time-varying vital rates in ecotoxicology: Selective pesticides and aphid population dynamics,, Ecological Modeling, 210 (2008), 155.  doi: 10.1016/j.ecolmodel.2007.07.022.  Google Scholar

[7]

H. T. Banks, S. Hu and W. C. Thompson, Modeling and Inverse Problems in the Presence of Uncertainty,, CRC Press, (2014).   Google Scholar

[8]

H. T. Banks and H. T. Tran, Mathematical and Experimental Modeling of Physical and Biological Processes,, CRC Press, (2009).   Google Scholar

[9]

J. R. Carey, Applied Demography for Biologists with Special Emphasis on Insects,, Oxford University Press, (1993).   Google Scholar

[10]

V. E. Forbes and P. Calow, Is the per capita rate of increase a good measure of population-level effects in ecotoxicology?, Environmental Toxicology and Chemistry, 18 (1999), 1544.  doi: 10.1002/etc.5620180729.  Google Scholar

[11]

V. E. Forbes and P. Calow, Extrapolation in ecological risk assessment: Balancing pragmatism and precaution in chemical controls legislation,, Bioscience, 52 (2002), 249.   Google Scholar

[12]

V. E. Forbes and P. Calow, Population growth rate as a basis for ecological risk assessment of toxic chemicals,, Philosophical Transaction of the Royal Society, 357 (2002), 1299.   Google Scholar

[13]

N. Hanson and J. D. Stark, A comparison of simple and complex population models to reduce uncertainty in ecological risk assessments of chemicals: Example with three species of Daphnia,, Ecotoxicology, 20 (2011), 1268.  doi: 10.1007/s10646-011-0675-4.  Google Scholar

[14]

N. Hanson and J. D. Stark, Utility of population models to reduce uncertainty and increase value relevance in ecological risk assessments of pesticides: An example based on acute mortality data for Daphnids,, Integrated Environmental Assessment and Management, 8 (2012), 262.  doi: 10.1002/ieam.272.  Google Scholar

[15]

U. Hommen, J. M. Baveco, N. Galic and P. J. van den Brink, Potential application of ecological models in the European environmental risk assessment of chemicals I: review of protection goals in EU directives and regulations,, Integrated Environmental Assessment and Management, 6 (2010), 325.  doi: 10.1002/ieam.69.  Google Scholar

[16]

M. Kot, Elements of Mathematical Ecology,, Cambridge University Press, (2001).  doi: 10.1017/CBO9780511608520.  Google Scholar

[17]

J. D. Stark and J. E. Banks, Developing Demographic Toxicity Data: Optimizing Effort for Predicting Population Outcomes,, PeerJ, (2015).   Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[4]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[5]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[6]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[7]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[8]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[9]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[10]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[11]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[12]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[13]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[14]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[17]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[18]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[19]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[20]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

[Back to Top]