Citation: |
[1] |
A. S. Ackleh, H. T. Banks and K. Deng, A finite difference approximation for a coupled system of nonlinear size-structured populations, Nonlinear Analysis, 50 (2002), 727-748.doi: 10.1016/S0362-546X(01)00780-5. |
[2] |
A. S. Ackleh and K. Deng, A monotone approximation for a nonlinear nonautonomous size-structured population model, Applied Mathematics and Computation, 108 (2000), 103-113.doi: 10.1016/S0096-3003(99)00002-8. |
[3] |
A. S. Ackleh and K. Deng, A monotone approximation for the nonautonomous size-structured population model, Quarterly of Applied Mathematics, 57 (1999), 261-267. |
[4] |
A. S. Ackleh, K. Deng and Q. Huang, Stochastic juvenile-adult models with application to a green tree frog population, Journal of Biological Dynamics, 5 (2011), 64-83.doi: 10.1080/17513758.2010.498924. |
[5] |
A. S. Ackleh, K. Deng and Q. Huang, Existence-uniqueness results and difference approximations for an amphibian juvenile-adult model, AMS Series in Contemporary Mathematics, Nonlinear Analysis and Optimization, 513 (2010), 1-23.doi: 10.1090/conm/513/10072. |
[6] |
A. S. Ackleh and K. Ito, An implicit finite difference scheme for the nonlinear size-structured population model, Numerical Functional Analysis and Optimization, 18 (1997), 865-884.doi: 10.1080/01630569708816798. |
[7] |
J. A. Arnot and F. A. Gobas, A food web bioaccumulation model for organic chemicals in aquatic ecosystems, Environmental Toxicology and Chemistry, 23 (2004), 2343-2355.doi: 10.1897/03-438. |
[8] |
A. Calsina and J. Saldana, A model of physiologically structured population dynamics with a nonlinear individual growth rate, Journal of Mathematical Biology, 33 (1995), 335-364.doi: 10.1007/BF00176377. |
[9] |
M. G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws, Mathematical of Computation, 34 (1980), 1-21.doi: 10.1090/S0025-5718-1980-0551288-3. |
[10] |
S. M. Bartell, R. A. Pastorok, H. R. Akcakaya, H. Regan, S. Ferson and C. Mackay, Realism and relevance of ecological models used in chemical risk assessment, Human and Ecological Risk Assessment, 9 (2003), 907-938.doi: 10.1080/713610016. |
[11] |
H. I. Freedman and J. B. Shukla, Models for the effect of toxicant in single-species and predator-prey systems, Journal of Mathematical Biology, 30 (1991), 15-30.doi: 10.1007/BF00168004. |
[12] |
N. Galic, U. Hommen, J. H. Baveco and P. J. van den Brink, Potential application of population models in the European ecological risk assessment of chemical II: Review of models and their popential to address environmental protection aims, Integrated Environmental Assessment and Management, 6 (2010), 338-360.doi: 10.1002/ieam.68. |
[13] |
T. G. Hallam, C. E. Clark and G. S. Jordan, Effect of toxicants on populations: A qualitative approach. II. First order kinetics, Journal of Mathematical Biology, 18 (1983), 25-37.doi: 10.1007/BF00275908. |
[14] |
T. G. Hallam and C. E. Clark, Effect of toxicants on populations: A qualitative approach. I. Equilibrium environmental exposure, Ecological Modelling, 18 (1983), 291-304.doi: 10.1016/0304-3800(83)90019-4. |
[15] |
de J. T. Luna and T. G. Hallam, Effect of toxicants on populations: A qualitative approach. IV. Resource-consumer-toxiocant models, Ecological Modelling, 35 (1987), 249-273. |
[16] |
Q. Huang, L. Parshotam, H. Wang, C. Bampfylde and M. A. Lewis, A model for the impact of contaminants on fish population dynamics, Journal of Theoretical Biology, 334 (2013), 71-79.doi: 10.1016/j.jtbi.2013.05.018. |
[17] |
M. Liu, Survival analysis of a cooperation system with random perturbations in a polluted environment, Nonlinear Analysis: Hybrid System, 18 (2015), 100-116.doi: 10.1016/j.nahs.2015.06.005. |
[18] |
M. Liu and K. Wang, Persistence and extincion of a single-species population system in a polluted environment with random perturbations and inpulsive toxicant input, Chaos, Solitions and Fractals, 45 (2012), 1541-1550. |
[19] |
H. Liu and Z. Ma, The threshold of survival for system of two species in a polluted environment, Journal of Mathematical Biology, 30 (1991), 49-61.doi: 10.1007/BF00168006. |
[20] |
Z. Ma, G. Cui and W. Wang, Persistence and extinction of a population in a polluted environment, Mathematical Biosciences, 101 (1990), 75-97.doi: 10.1016/0025-5564(90)90103-6. |
[21] |
D. Mackay and A. Fraser, Bioaccumulation of persistent organic chemicals: Mechanisms and models, Environmental Pollution, 110 (2000), 375-391.doi: 10.1016/S0269-7491(00)00162-7. |
[22] |
J. A. J. Metz and O. Diekmann, eds., The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, 68, Springer-Verlag, Berlin, 1986.doi: 10.1007/978-3-662-13159-6. |
[23] |
J. Pan, Z. Jin and Z. Ma, Threshold of survival for a $n$-dimensional Volterra mutualistic system in a polluted environment, Journal of Mathematical Analysis and Applications, 252 (2000), 519-531.doi: 10.1006/jmaa.2000.6853. |
[24] |
R. A. Pastorok, S. M. Bartell, S. Ferson and L. R. Ginzburg, Ecological Modeling in Risk Assessment: Chemical Effects on Populations, Ecosystems, and Landscapes, Lewis Publishers, Boca Raton, FL, USA, 2001.doi: 10.1201/9781420032321. |
[25] |
R. A. Pastorok, H. R. Akcakaya, H. Regan, S. Ferson and S. M. Bartell, Role of ecological modeling in risk assessment, Human and Ecological Risk Assessment, 9 (2003), 939-972.doi: 10.1080/713610017. |
[26] |
J. Shen, C. W. Shu and M. Zhang, High resolution schemes for a hierarchical size-structured model, SIAM Journal on Numerical Analysis, 45 (2007), 352-370.doi: 10.1137/050638126. |
[27] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York, 1994.doi: 10.1007/978-1-4612-0873-0. |
[28] |
H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, 2003. |
[29] |
D. M. Thomas, T. W. Snell and S. M. Jaffar, A control problem in a polluted environment, Mathematical Biosciences, 133 (1996), 139-163.doi: 10.1016/0025-5564(95)00091-7. |
[30] |
Y. Zhao, S, Yuan and J, Ma, Survival and stationary distribution analysis of a stochastic competition model of three species in a polluted environment, Bulletin of Mathematical Biology, 77 (2015), 1285-1326.doi: 10.1007/s11538-015-0086-4. |
[31] |
Canadian Council of Ministers of the Environment, 2003b., Canadian water quality guidelines for the protection of aquatic life: Inorganic mercury and methylmercury. IN: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg, Manitoba. 6 pp. [Last accessed November 21, 2014], Available from: http://ceqg-rcqe.ccme.ca/download/en/191. |
[32] |
U. S. National Archives and Records Administration, Code of Federal Regulations, Title 40- Protection of Environment, Appendix A to part 423-126 priority pollutants, 2013, Available from: https://www.gpo.gov/fdsys/granule/CFR-2012-title40-vol30/CFR-2012-title40-vol30-part423-appA/content-detail.html. |