
Previous Article
Global stability of a networkbased SIS epidemic model with a general nonlinear incidence rate
 MBE Home
 This Issue

Next Article
Optimal harvesting policy for the BevertonHolt model
A toxinmediated sizestructured population model: Finite difference approximation and wellposedness
1.  Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada 
2.  Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1 
References:
[1] 
A. S. Ackleh, H. T. Banks and K. Deng, A finite difference approximation for a coupled system of nonlinear sizestructured populations, Nonlinear Analysis, 50 (2002), 727748. doi: 10.1016/S0362546X(01)007805. 
[2] 
A. S. Ackleh and K. Deng, A monotone approximation for a nonlinear nonautonomous sizestructured population model, Applied Mathematics and Computation, 108 (2000), 103113. doi: 10.1016/S00963003(99)000028. 
[3] 
A. S. Ackleh and K. Deng, A monotone approximation for the nonautonomous sizestructured population model, Quarterly of Applied Mathematics, 57 (1999), 261267. 
[4] 
A. S. Ackleh, K. Deng and Q. Huang, Stochastic juvenileadult models with application to a green tree frog population, Journal of Biological Dynamics, 5 (2011), 6483. doi: 10.1080/17513758.2010.498924. 
[5] 
A. S. Ackleh, K. Deng and Q. Huang, Existenceuniqueness results and difference approximations for an amphibian juvenileadult model, AMS Series in Contemporary Mathematics, Nonlinear Analysis and Optimization, 513 (2010), 123. doi: 10.1090/conm/513/10072. 
[6] 
A. S. Ackleh and K. Ito, An implicit finite difference scheme for the nonlinear sizestructured population model, Numerical Functional Analysis and Optimization, 18 (1997), 865884. doi: 10.1080/01630569708816798. 
[7] 
J. A. Arnot and F. A. Gobas, A food web bioaccumulation model for organic chemicals in aquatic ecosystems, Environmental Toxicology and Chemistry, 23 (2004), 23432355. doi: 10.1897/03438. 
[8] 
A. Calsina and J. Saldana, A model of physiologically structured population dynamics with a nonlinear individual growth rate, Journal of Mathematical Biology, 33 (1995), 335364. doi: 10.1007/BF00176377. 
[9] 
M. G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws, Mathematical of Computation, 34 (1980), 121. doi: 10.1090/S00255718198005512883. 
[10] 
S. M. Bartell, R. A. Pastorok, H. R. Akcakaya, H. Regan, S. Ferson and C. Mackay, Realism and relevance of ecological models used in chemical risk assessment, Human and Ecological Risk Assessment, 9 (2003), 907938. doi: 10.1080/713610016. 
[11] 
H. I. Freedman and J. B. Shukla, Models for the effect of toxicant in singlespecies and predatorprey systems, Journal of Mathematical Biology, 30 (1991), 1530. doi: 10.1007/BF00168004. 
[12] 
N. Galic, U. Hommen, J. H. Baveco and P. J. van den Brink, Potential application of population models in the European ecological risk assessment of chemical II: Review of models and their popential to address environmental protection aims, Integrated Environmental Assessment and Management, 6 (2010), 338360. doi: 10.1002/ieam.68. 
[13] 
T. G. Hallam, C. E. Clark and G. S. Jordan, Effect of toxicants on populations: A qualitative approach. II. First order kinetics, Journal of Mathematical Biology, 18 (1983), 2537. doi: 10.1007/BF00275908. 
[14] 
T. G. Hallam and C. E. Clark, Effect of toxicants on populations: A qualitative approach. I. Equilibrium environmental exposure, Ecological Modelling, 18 (1983), 291304. doi: 10.1016/03043800(83)900194. 
[15] 
de J. T. Luna and T. G. Hallam, Effect of toxicants on populations: A qualitative approach. IV. Resourceconsumertoxiocant models, Ecological Modelling, 35 (1987), 249273. 
[16] 
Q. Huang, L. Parshotam, H. Wang, C. Bampfylde and M. A. Lewis, A model for the impact of contaminants on fish population dynamics, Journal of Theoretical Biology, 334 (2013), 7179. doi: 10.1016/j.jtbi.2013.05.018. 
[17] 
M. Liu, Survival analysis of a cooperation system with random perturbations in a polluted environment, Nonlinear Analysis: Hybrid System, 18 (2015), 100116. doi: 10.1016/j.nahs.2015.06.005. 
[18] 
M. Liu and K. Wang, Persistence and extincion of a singlespecies population system in a polluted environment with random perturbations and inpulsive toxicant input, Chaos, Solitions and Fractals, 45 (2012), 15411550. 
[19] 
H. Liu and Z. Ma, The threshold of survival for system of two species in a polluted environment, Journal of Mathematical Biology, 30 (1991), 4961. doi: 10.1007/BF00168006. 
[20] 
Z. Ma, G. Cui and W. Wang, Persistence and extinction of a population in a polluted environment, Mathematical Biosciences, 101 (1990), 7597. doi: 10.1016/00255564(90)901036. 
[21] 
D. Mackay and A. Fraser, Bioaccumulation of persistent organic chemicals: Mechanisms and models, Environmental Pollution, 110 (2000), 375391. doi: 10.1016/S02697491(00)001627. 
[22] 
J. A. J. Metz and O. Diekmann, eds., The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, 68, SpringerVerlag, Berlin, 1986. doi: 10.1007/9783662131596. 
[23] 
J. Pan, Z. Jin and Z. Ma, Threshold of survival for a $n$dimensional Volterra mutualistic system in a polluted environment, Journal of Mathematical Analysis and Applications, 252 (2000), 519531. doi: 10.1006/jmaa.2000.6853. 
[24] 
R. A. Pastorok, S. M. Bartell, S. Ferson and L. R. Ginzburg, Ecological Modeling in Risk Assessment: Chemical Effects on Populations, Ecosystems, and Landscapes, Lewis Publishers, Boca Raton, FL, USA, 2001. doi: 10.1201/9781420032321. 
[25] 
R. A. Pastorok, H. R. Akcakaya, H. Regan, S. Ferson and S. M. Bartell, Role of ecological modeling in risk assessment, Human and Ecological Risk Assessment, 9 (2003), 939972. doi: 10.1080/713610017. 
[26] 
J. Shen, C. W. Shu and M. Zhang, High resolution schemes for a hierarchical sizestructured model, SIAM Journal on Numerical Analysis, 45 (2007), 352370. doi: 10.1137/050638126. 
[27] 
J. Smoller, Shock Waves and ReactionDiffusion Equations, Springer, New York, 1994. doi: 10.1007/9781461208730. 
[28] 
H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, 2003. 
[29] 
D. M. Thomas, T. W. Snell and S. M. Jaffar, A control problem in a polluted environment, Mathematical Biosciences, 133 (1996), 139163. doi: 10.1016/00255564(95)000917. 
[30] 
Y. Zhao, S, Yuan and J, Ma, Survival and stationary distribution analysis of a stochastic competition model of three species in a polluted environment, Bulletin of Mathematical Biology, 77 (2015), 12851326. doi: 10.1007/s1153801500864. 
[31] 
Canadian Council of Ministers of the Environment, 2003b., Canadian water quality guidelines for the protection of aquatic life: Inorganic mercury and methylmercury. IN: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg, Manitoba. 6 pp. [Last accessed November 21, 2014], Available from: http://ceqgrcqe.ccme.ca/download/en/191. 
[32] 
U. S. National Archives and Records Administration, Code of Federal Regulations, Title 40 Protection of Environment, Appendix A to part 423126 priority pollutants, 2013,, Available from: , (). 
show all references
References:
[1] 
A. S. Ackleh, H. T. Banks and K. Deng, A finite difference approximation for a coupled system of nonlinear sizestructured populations, Nonlinear Analysis, 50 (2002), 727748. doi: 10.1016/S0362546X(01)007805. 
[2] 
A. S. Ackleh and K. Deng, A monotone approximation for a nonlinear nonautonomous sizestructured population model, Applied Mathematics and Computation, 108 (2000), 103113. doi: 10.1016/S00963003(99)000028. 
[3] 
A. S. Ackleh and K. Deng, A monotone approximation for the nonautonomous sizestructured population model, Quarterly of Applied Mathematics, 57 (1999), 261267. 
[4] 
A. S. Ackleh, K. Deng and Q. Huang, Stochastic juvenileadult models with application to a green tree frog population, Journal of Biological Dynamics, 5 (2011), 6483. doi: 10.1080/17513758.2010.498924. 
[5] 
A. S. Ackleh, K. Deng and Q. Huang, Existenceuniqueness results and difference approximations for an amphibian juvenileadult model, AMS Series in Contemporary Mathematics, Nonlinear Analysis and Optimization, 513 (2010), 123. doi: 10.1090/conm/513/10072. 
[6] 
A. S. Ackleh and K. Ito, An implicit finite difference scheme for the nonlinear sizestructured population model, Numerical Functional Analysis and Optimization, 18 (1997), 865884. doi: 10.1080/01630569708816798. 
[7] 
J. A. Arnot and F. A. Gobas, A food web bioaccumulation model for organic chemicals in aquatic ecosystems, Environmental Toxicology and Chemistry, 23 (2004), 23432355. doi: 10.1897/03438. 
[8] 
A. Calsina and J. Saldana, A model of physiologically structured population dynamics with a nonlinear individual growth rate, Journal of Mathematical Biology, 33 (1995), 335364. doi: 10.1007/BF00176377. 
[9] 
M. G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws, Mathematical of Computation, 34 (1980), 121. doi: 10.1090/S00255718198005512883. 
[10] 
S. M. Bartell, R. A. Pastorok, H. R. Akcakaya, H. Regan, S. Ferson and C. Mackay, Realism and relevance of ecological models used in chemical risk assessment, Human and Ecological Risk Assessment, 9 (2003), 907938. doi: 10.1080/713610016. 
[11] 
H. I. Freedman and J. B. Shukla, Models for the effect of toxicant in singlespecies and predatorprey systems, Journal of Mathematical Biology, 30 (1991), 1530. doi: 10.1007/BF00168004. 
[12] 
N. Galic, U. Hommen, J. H. Baveco and P. J. van den Brink, Potential application of population models in the European ecological risk assessment of chemical II: Review of models and their popential to address environmental protection aims, Integrated Environmental Assessment and Management, 6 (2010), 338360. doi: 10.1002/ieam.68. 
[13] 
T. G. Hallam, C. E. Clark and G. S. Jordan, Effect of toxicants on populations: A qualitative approach. II. First order kinetics, Journal of Mathematical Biology, 18 (1983), 2537. doi: 10.1007/BF00275908. 
[14] 
T. G. Hallam and C. E. Clark, Effect of toxicants on populations: A qualitative approach. I. Equilibrium environmental exposure, Ecological Modelling, 18 (1983), 291304. doi: 10.1016/03043800(83)900194. 
[15] 
de J. T. Luna and T. G. Hallam, Effect of toxicants on populations: A qualitative approach. IV. Resourceconsumertoxiocant models, Ecological Modelling, 35 (1987), 249273. 
[16] 
Q. Huang, L. Parshotam, H. Wang, C. Bampfylde and M. A. Lewis, A model for the impact of contaminants on fish population dynamics, Journal of Theoretical Biology, 334 (2013), 7179. doi: 10.1016/j.jtbi.2013.05.018. 
[17] 
M. Liu, Survival analysis of a cooperation system with random perturbations in a polluted environment, Nonlinear Analysis: Hybrid System, 18 (2015), 100116. doi: 10.1016/j.nahs.2015.06.005. 
[18] 
M. Liu and K. Wang, Persistence and extincion of a singlespecies population system in a polluted environment with random perturbations and inpulsive toxicant input, Chaos, Solitions and Fractals, 45 (2012), 15411550. 
[19] 
H. Liu and Z. Ma, The threshold of survival for system of two species in a polluted environment, Journal of Mathematical Biology, 30 (1991), 4961. doi: 10.1007/BF00168006. 
[20] 
Z. Ma, G. Cui and W. Wang, Persistence and extinction of a population in a polluted environment, Mathematical Biosciences, 101 (1990), 7597. doi: 10.1016/00255564(90)901036. 
[21] 
D. Mackay and A. Fraser, Bioaccumulation of persistent organic chemicals: Mechanisms and models, Environmental Pollution, 110 (2000), 375391. doi: 10.1016/S02697491(00)001627. 
[22] 
J. A. J. Metz and O. Diekmann, eds., The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, 68, SpringerVerlag, Berlin, 1986. doi: 10.1007/9783662131596. 
[23] 
J. Pan, Z. Jin and Z. Ma, Threshold of survival for a $n$dimensional Volterra mutualistic system in a polluted environment, Journal of Mathematical Analysis and Applications, 252 (2000), 519531. doi: 10.1006/jmaa.2000.6853. 
[24] 
R. A. Pastorok, S. M. Bartell, S. Ferson and L. R. Ginzburg, Ecological Modeling in Risk Assessment: Chemical Effects on Populations, Ecosystems, and Landscapes, Lewis Publishers, Boca Raton, FL, USA, 2001. doi: 10.1201/9781420032321. 
[25] 
R. A. Pastorok, H. R. Akcakaya, H. Regan, S. Ferson and S. M. Bartell, Role of ecological modeling in risk assessment, Human and Ecological Risk Assessment, 9 (2003), 939972. doi: 10.1080/713610017. 
[26] 
J. Shen, C. W. Shu and M. Zhang, High resolution schemes for a hierarchical sizestructured model, SIAM Journal on Numerical Analysis, 45 (2007), 352370. doi: 10.1137/050638126. 
[27] 
J. Smoller, Shock Waves and ReactionDiffusion Equations, Springer, New York, 1994. doi: 10.1007/9781461208730. 
[28] 
H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, 2003. 
[29] 
D. M. Thomas, T. W. Snell and S. M. Jaffar, A control problem in a polluted environment, Mathematical Biosciences, 133 (1996), 139163. doi: 10.1016/00255564(95)000917. 
[30] 
Y. Zhao, S, Yuan and J, Ma, Survival and stationary distribution analysis of a stochastic competition model of three species in a polluted environment, Bulletin of Mathematical Biology, 77 (2015), 12851326. doi: 10.1007/s1153801500864. 
[31] 
Canadian Council of Ministers of the Environment, 2003b., Canadian water quality guidelines for the protection of aquatic life: Inorganic mercury and methylmercury. IN: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg, Manitoba. 6 pp. [Last accessed November 21, 2014], Available from: http://ceqgrcqe.ccme.ca/download/en/191. 
[32] 
U. S. National Archives and Records Administration, Code of Federal Regulations, Title 40 Protection of Environment, Appendix A to part 423126 priority pollutants, 2013,, Available from: , (). 
[1] 
Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measurevalued solutions of a hierarchically sizestructured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233258. doi: 10.3934/mbe.2015.12.233 
[2] 
Dongxue Yan, Xianlong Fu. Asymptotic behavior of a hierarchical sizestructured population model. Evolution Equations and Control Theory, 2018, 7 (2) : 293316. doi: 10.3934/eect.2018015 
[3] 
Xianlong Fu, Dongmei Zhu. Stability analysis for a sizestructured juvenileadult population model. Discrete and Continuous Dynamical Systems  B, 2014, 19 (2) : 391417. doi: 10.3934/dcdsb.2014.19.391 
[4] 
H. L. Smith, X. Q. Zhao. Competitive exclusion in a discretetime, sizestructured chemostat model. Discrete and Continuous Dynamical Systems  B, 2001, 1 (2) : 183191. doi: 10.3934/dcdsb.2001.1.183 
[5] 
Xianlong Fu, Dongmei Zhu. Stability results for a sizestructured population model with delayed birth process. Discrete and Continuous Dynamical Systems  B, 2013, 18 (1) : 109131. doi: 10.3934/dcdsb.2013.18.109 
[6] 
Jixun Chu, Pierre Magal. Hopf bifurcation for a sizestructured model with resting phase. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 48914921. doi: 10.3934/dcds.2013.33.4891 
[7] 
Yunfei Lv, Yongzhen Pei, Rong Yuan. On a nonlinear sizestructured population model. Discrete and Continuous Dynamical Systems  B, 2020, 25 (8) : 31113133. doi: 10.3934/dcdsb.2020053 
[8] 
Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a sizestructured population model. Discrete and Continuous Dynamical Systems  B, 2017, 22 (3) : 831840. doi: 10.3934/dcdsb.2017041 
[9] 
Abed Boulouz. A spatially and sizestructured population model with unbounded birth process. Discrete and Continuous Dynamical Systems  B, 2022 doi: 10.3934/dcdsb.2022038 
[10] 
József Z. Farkas, Thomas Hagen. Asymptotic analysis of a sizestructured cannibalism model with infinite dimensional environmental feedback. Communications on Pure and Applied Analysis, 2009, 8 (6) : 18251839. doi: 10.3934/cpaa.2009.8.1825 
[11] 
Dan Zhang, Xiaochun Cai, Lin Wang. Complex dynamics in a discretetime sizestructured chemostat model with inhibitory kinetics. Discrete and Continuous Dynamical Systems  B, 2019, 24 (7) : 34393451. doi: 10.3934/dcdsb.2018327 
[12] 
Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and sizestructured population model with delayed birth process. Communications on Pure and Applied Analysis, 2016, 15 (2) : 637655. doi: 10.3934/cpaa.2016.15.637 
[13] 
Dongxue Yan, Yu Cao, Xianlong Fu. Asymptotic analysis of a sizestructured cannibalism population model with delayed birth process. Discrete and Continuous Dynamical Systems  B, 2016, 21 (6) : 19751998. doi: 10.3934/dcdsb.2016032 
[14] 
Dongxue Yan, Xianlong Fu. Longtime behavior of a sizestructured population model with diffusion and delayed birth process. Evolution Equations and Control Theory, 2022, 11 (3) : 895923. doi: 10.3934/eect.2021030 
[15] 
Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu. Parameter Estimation in a Coupled System of Nonlinear SizeStructured Populations. Mathematical Biosciences & Engineering, 2005, 2 (2) : 289315. doi: 10.3934/mbe.2005.2.289 
[16] 
L. M. Abia, O. Angulo, J.C. LópezMarcos. Sizestructured population dynamics models and their numerical solutions. Discrete and Continuous Dynamical Systems  B, 2004, 4 (4) : 12031222. doi: 10.3934/dcdsb.2004.4.1203 
[17] 
Keith E. Howard. A size structured model of cell dwarfism. Discrete and Continuous Dynamical Systems  B, 2001, 1 (4) : 471484. doi: 10.3934/dcdsb.2001.1.471 
[18] 
Blaise Faugeras, Olivier Maury. An advectiondiffusionreaction sizestructured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences & Engineering, 2005, 2 (4) : 719741. doi: 10.3934/mbe.2005.2.719 
[19] 
József Z. Farkas, Thomas Hagen. Asymptotic behavior of sizestructured populations via juvenileadult interaction. Discrete and Continuous Dynamical Systems  B, 2008, 9 (2) : 249266. doi: 10.3934/dcdsb.2008.9.249 
[20] 
Mustapha MokhtarKharroubi, Quentin Richard. Spectral theory and time asymptotics of sizestructured twophase population models. Discrete and Continuous Dynamical Systems  B, 2020, 25 (8) : 29693004. doi: 10.3934/dcdsb.2020048 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]