Citation: |
[1] |
L.-M. Cai and X.-Z. Li, Analysis of a SEIV epidemic model with a nonlinear incidence rate, Appl. Math. Modelling, 33 (2009), 2919-2926.doi: 10.1016/j.apm.2008.01.005. |
[2] |
X. Chu, Z. Zhang, J. Guan and S. Zhou, Epidemic spreading with nonlinear infectivity in weighted scale-free networks, Physica A, 390 (2011), 471-481.doi: 10.1016/j.physa.2010.09.038. |
[3] |
X. Fu, M. Small, D. M. Walker and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys. Rev. E, 77 (2008), 036113, 8pp.doi: 10.1103/PhysRevE.77.036113. |
[4] |
H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.doi: 10.1137/S0036144500371907. |
[5] |
S. Huang, Dynamic analysis of an SEIRS model with nonlinear infectivity on complex networks, Int. J. Biomath., 9 (2016), 1650009, 25pp.doi: 10.1142/S1793524516500091. |
[6] |
J. Jiang, On the global stability of cooperative systems, B. Lond. Math. Soc., 26 (1994), 455-458.doi: 10.1112/blms/26.5.455. |
[7] |
Z. Jin, G. Sun and H. Zhu, Epidemic models for complex networks with demographics, Math. Biosci. Eng., 11 (2014), 1295-1317.doi: 10.3934/mbe.2014.11.1295. |
[8] |
H. Kang and X. Fu, Epidemic spreading and global stability of an SIS model with an infective vector on complex networks, Commun. Nonlinear Sci. Numer. Simul., 27 (2015), 30-39.doi: 10.1016/j.cnsns.2015.02.018. |
[9] |
A. Lahrouz, L. Omari, D. Kiouach and A. Belmaâtic, Complete global stability for an SIRS epidemic model with generalized nonlinear incidence and vaccination, Appl. Math. Comput., 218 (2012), 6519-6525.doi: 10.1016/j.amc.2011.12.024. |
[10] |
A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28 (1976), 221-236.doi: 10.1016/0025-5564(76)90125-5. |
[11] |
C.-H. Li, Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate, Physica A, 427 (2015), 234-243.doi: 10.1016/j.physa.2015.02.023. |
[12] |
J. Liu, Y. Tang and Z. R. Yang, The spread of disease with birth and death on networks, J. Stat. Mech., 2004 (2004), p08008.doi: 10.1088/1742-5468/2004/08/P08008. |
[13] |
M. Liu and Y. Chen, An SIRS model with differential susceptibility and infectivity on uncorrelated networks, Math. Biosci. Eng., 12 (2015), 415-429.doi: 10.3934/mbe.2015.12.415. |
[14] |
M. Liu and J. Ruan, Modelling of epidemics with a generalized nonlinear incidence on complex networks, Complex Sciences, Springer Berlin Heidelberg, 5 (2009), 2118-2126.doi: 10.1007/978-3-642-02469-6_88. |
[15] |
Z. Ma, Y. Zhou, W. Wang and Z. Jin, Mathematical Models and Dynamics of Infectious Diseases, China sci. press, Beijing, 2004. |
[16] |
R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission, Phys. Rev. E, 70 (2004), 030902.doi: 10.1103/PhysRevE.70.030902. |
[17] |
R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 63 (2001), 066117.doi: 10.1103/PhysRevE.63.066117. |
[18] |
S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equations, 188 (2003), 135-163.doi: 10.1016/S0022-0396(02)00089-X. |
[19] |
J. Sanz, L. Floría and Y. Moreno, Spreading of persistent infections in heterogeneous populations, Phys. Rev. E, 81 (2010), 056108, 9pp.doi: 10.1103/PhysRevE.81.056108. |
[20] |
L. Wang and G.-Z. Dai, Global stability of virus spreading in complex heterogeneous networks, SIAM J. Appl. Math., 68 (2008), 1495-1502.doi: 10.1137/070694582. |
[21] |
R. Yang, B. Wang, J. Ren, W. Bai, Z. Shi, W. Wang and T. Zhou, Epidemic spreading on heterogeneous networks with identical infectivity, Phys. Lett. A, 364 (2007), 189-193.doi: 10.1016/j.physleta.2006.12.021. |
[22] |
H. Zhang and X. Fu, Spreading of epidemics on scale-free networks with nonlinear infectivity, Nonlinear Anal. Theory Methods Appl., 70 (2009), 3273-3278.doi: 10.1016/j.na.2008.04.031. |
[23] |
J. Zhang and J. Sun, Stability analysis of an SIS epidemic model with feedback mechanism on networks, Physica A, 394 (2014), 24-32.doi: 10.1016/j.physa.2013.09.058. |
[24] |
J. Zhang and J. Sun, Analysis of epidemic spreading with feedback mechanism in weighted networks, Int. J. Biomath., 8 (2015), 1550007, 11pp.doi: 10.1142/S1793524515500072. |
[25] |
J. Zhang and Z. Jin, The analysis of an epidemic model on networks, Appl. Math. Comput., 217 (2011), 7053-7064.doi: 10.1016/j.amc.2010.09.063. |
[26] |
G. Zhu, X. Fu and G. Chen, Global attractivity of a network-based epidemic SIS model with nonlinear infectivity, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2588-2594.doi: 10.1016/j.cnsns.2011.08.039. |
[27] |
G. Zhu, X. Fu and G. Chen, Spreading dynamics and global stability of a generalized epidemic model on complex heterogeneous networks, Appl. Math. Modell., 36 (2012), 5808-5817.doi: 10.1016/j.apm.2012.01.023. |