2016, 13(4): 723-739. doi: 10.3934/mbe.2016016

Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate

1. 

Mathematics and Science College, Shanghai Normal University, Shanghai, 200234, China

2. 

Mathematics and Science College, Shanghai Normal University, Shanghai 200234

Received  October 2015 Revised  February 2016 Published  May 2016

In this paper, we develop and analyze an SIS epidemic model with a general nonlinear incidence rate, as well as degree-dependent birth and natural death, on heterogeneous networks. We analytically derive the epidemic threshold $R_0$ which completely governs the disease dynamics: when $R_0<1$, the disease-free equilibrium is globally asymptotically stable, i.e., the disease will die out; when $R_0>1$, the disease is permanent. It is interesting that the threshold value $R_0$ bears no relation to the functional form of the nonlinear incidence rate and degree-dependent birth. Furthermore, by applying an iteration scheme and the theory of cooperative system respectively, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. Our results improve and generalize some known results. To illustrate the theoretical results, the corresponding numerical simulations are also given.
Citation: Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences & Engineering, 2016, 13 (4) : 723-739. doi: 10.3934/mbe.2016016
References:
[1]

L.-M. Cai and X.-Z. Li, Analysis of a SEIV epidemic model with a nonlinear incidence rate,, Appl. Math. Modelling, 33 (2009), 2919.  doi: 10.1016/j.apm.2008.01.005.  Google Scholar

[2]

X. Chu, Z. Zhang, J. Guan and S. Zhou, Epidemic spreading with nonlinear infectivity in weighted scale-free networks,, Physica A, 390 (2011), 471.  doi: 10.1016/j.physa.2010.09.038.  Google Scholar

[3]

X. Fu, M. Small, D. M. Walker and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization,, Phys. Rev. E, 77 (2008).  doi: 10.1103/PhysRevE.77.036113.  Google Scholar

[4]

H. Hethcote, The mathematics of infectious diseases,, SIAM Rev., 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[5]

S. Huang, Dynamic analysis of an SEIRS model with nonlinear infectivity on complex networks,, Int. J. Biomath., 9 (2016).  doi: 10.1142/S1793524516500091.  Google Scholar

[6]

J. Jiang, On the global stability of cooperative systems,, B. Lond. Math. Soc., 26 (1994), 455.  doi: 10.1112/blms/26.5.455.  Google Scholar

[7]

Z. Jin, G. Sun and H. Zhu, Epidemic models for complex networks with demographics,, Math. Biosci. Eng., 11 (2014), 1295.  doi: 10.3934/mbe.2014.11.1295.  Google Scholar

[8]

H. Kang and X. Fu, Epidemic spreading and global stability of an SIS model with an infective vector on complex networks,, Commun. Nonlinear Sci. Numer. Simul., 27 (2015), 30.  doi: 10.1016/j.cnsns.2015.02.018.  Google Scholar

[9]

A. Lahrouz, L. Omari, D. Kiouach and A. Belmaâtic, Complete global stability for an SIRS epidemic model with generalized nonlinear incidence and vaccination,, Appl. Math. Comput., 218 (2012), 6519.  doi: 10.1016/j.amc.2011.12.024.  Google Scholar

[10]

A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population,, Math. Biosci., 28 (1976), 221.  doi: 10.1016/0025-5564(76)90125-5.  Google Scholar

[11]

C.-H. Li, Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate,, Physica A, 427 (2015), 234.  doi: 10.1016/j.physa.2015.02.023.  Google Scholar

[12]

J. Liu, Y. Tang and Z. R. Yang, The spread of disease with birth and death on networks,, J. Stat. Mech., 2004 (2004).  doi: 10.1088/1742-5468/2004/08/P08008.  Google Scholar

[13]

M. Liu and Y. Chen, An SIRS model with differential susceptibility and infectivity on uncorrelated networks,, Math. Biosci. Eng., 12 (2015), 415.  doi: 10.3934/mbe.2015.12.415.  Google Scholar

[14]

M. Liu and J. Ruan, Modelling of epidemics with a generalized nonlinear incidence on complex networks,, Complex Sciences, 5 (2009), 2118.  doi: 10.1007/978-3-642-02469-6_88.  Google Scholar

[15]

Z. Ma, Y. Zhou, W. Wang and Z. Jin, Mathematical Models and Dynamics of Infectious Diseases,, China sci. press, (2004).   Google Scholar

[16]

R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission,, Phys. Rev. E, 70 (2004).  doi: 10.1103/PhysRevE.70.030902.  Google Scholar

[17]

R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks,, Phys. Rev. E, 63 (2001).  doi: 10.1103/PhysRevE.63.066117.  Google Scholar

[18]

S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate,, J. Differ. Equations, 188 (2003), 135.  doi: 10.1016/S0022-0396(02)00089-X.  Google Scholar

[19]

J. Sanz, L. Floría and Y. Moreno, Spreading of persistent infections in heterogeneous populations,, Phys. Rev. E, 81 (2010).  doi: 10.1103/PhysRevE.81.056108.  Google Scholar

[20]

L. Wang and G.-Z. Dai, Global stability of virus spreading in complex heterogeneous networks,, SIAM J. Appl. Math., 68 (2008), 1495.  doi: 10.1137/070694582.  Google Scholar

[21]

R. Yang, B. Wang, J. Ren, W. Bai, Z. Shi, W. Wang and T. Zhou, Epidemic spreading on heterogeneous networks with identical infectivity,, Phys. Lett. A, 364 (2007), 189.  doi: 10.1016/j.physleta.2006.12.021.  Google Scholar

[22]

H. Zhang and X. Fu, Spreading of epidemics on scale-free networks with nonlinear infectivity,, Nonlinear Anal. Theory Methods Appl., 70 (2009), 3273.  doi: 10.1016/j.na.2008.04.031.  Google Scholar

[23]

J. Zhang and J. Sun, Stability analysis of an SIS epidemic model with feedback mechanism on networks,, Physica A, 394 (2014), 24.  doi: 10.1016/j.physa.2013.09.058.  Google Scholar

[24]

J. Zhang and J. Sun, Analysis of epidemic spreading with feedback mechanism in weighted networks,, Int. J. Biomath., 8 (2015).  doi: 10.1142/S1793524515500072.  Google Scholar

[25]

J. Zhang and Z. Jin, The analysis of an epidemic model on networks,, Appl. Math. Comput., 217 (2011), 7053.  doi: 10.1016/j.amc.2010.09.063.  Google Scholar

[26]

G. Zhu, X. Fu and G. Chen, Global attractivity of a network-based epidemic SIS model with nonlinear infectivity,, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2588.  doi: 10.1016/j.cnsns.2011.08.039.  Google Scholar

[27]

G. Zhu, X. Fu and G. Chen, Spreading dynamics and global stability of a generalized epidemic model on complex heterogeneous networks,, Appl. Math. Modell., 36 (2012), 5808.  doi: 10.1016/j.apm.2012.01.023.  Google Scholar

show all references

References:
[1]

L.-M. Cai and X.-Z. Li, Analysis of a SEIV epidemic model with a nonlinear incidence rate,, Appl. Math. Modelling, 33 (2009), 2919.  doi: 10.1016/j.apm.2008.01.005.  Google Scholar

[2]

X. Chu, Z. Zhang, J. Guan and S. Zhou, Epidemic spreading with nonlinear infectivity in weighted scale-free networks,, Physica A, 390 (2011), 471.  doi: 10.1016/j.physa.2010.09.038.  Google Scholar

[3]

X. Fu, M. Small, D. M. Walker and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization,, Phys. Rev. E, 77 (2008).  doi: 10.1103/PhysRevE.77.036113.  Google Scholar

[4]

H. Hethcote, The mathematics of infectious diseases,, SIAM Rev., 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[5]

S. Huang, Dynamic analysis of an SEIRS model with nonlinear infectivity on complex networks,, Int. J. Biomath., 9 (2016).  doi: 10.1142/S1793524516500091.  Google Scholar

[6]

J. Jiang, On the global stability of cooperative systems,, B. Lond. Math. Soc., 26 (1994), 455.  doi: 10.1112/blms/26.5.455.  Google Scholar

[7]

Z. Jin, G. Sun and H. Zhu, Epidemic models for complex networks with demographics,, Math. Biosci. Eng., 11 (2014), 1295.  doi: 10.3934/mbe.2014.11.1295.  Google Scholar

[8]

H. Kang and X. Fu, Epidemic spreading and global stability of an SIS model with an infective vector on complex networks,, Commun. Nonlinear Sci. Numer. Simul., 27 (2015), 30.  doi: 10.1016/j.cnsns.2015.02.018.  Google Scholar

[9]

A. Lahrouz, L. Omari, D. Kiouach and A. Belmaâtic, Complete global stability for an SIRS epidemic model with generalized nonlinear incidence and vaccination,, Appl. Math. Comput., 218 (2012), 6519.  doi: 10.1016/j.amc.2011.12.024.  Google Scholar

[10]

A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population,, Math. Biosci., 28 (1976), 221.  doi: 10.1016/0025-5564(76)90125-5.  Google Scholar

[11]

C.-H. Li, Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate,, Physica A, 427 (2015), 234.  doi: 10.1016/j.physa.2015.02.023.  Google Scholar

[12]

J. Liu, Y. Tang and Z. R. Yang, The spread of disease with birth and death on networks,, J. Stat. Mech., 2004 (2004).  doi: 10.1088/1742-5468/2004/08/P08008.  Google Scholar

[13]

M. Liu and Y. Chen, An SIRS model with differential susceptibility and infectivity on uncorrelated networks,, Math. Biosci. Eng., 12 (2015), 415.  doi: 10.3934/mbe.2015.12.415.  Google Scholar

[14]

M. Liu and J. Ruan, Modelling of epidemics with a generalized nonlinear incidence on complex networks,, Complex Sciences, 5 (2009), 2118.  doi: 10.1007/978-3-642-02469-6_88.  Google Scholar

[15]

Z. Ma, Y. Zhou, W. Wang and Z. Jin, Mathematical Models and Dynamics of Infectious Diseases,, China sci. press, (2004).   Google Scholar

[16]

R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission,, Phys. Rev. E, 70 (2004).  doi: 10.1103/PhysRevE.70.030902.  Google Scholar

[17]

R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks,, Phys. Rev. E, 63 (2001).  doi: 10.1103/PhysRevE.63.066117.  Google Scholar

[18]

S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate,, J. Differ. Equations, 188 (2003), 135.  doi: 10.1016/S0022-0396(02)00089-X.  Google Scholar

[19]

J. Sanz, L. Floría and Y. Moreno, Spreading of persistent infections in heterogeneous populations,, Phys. Rev. E, 81 (2010).  doi: 10.1103/PhysRevE.81.056108.  Google Scholar

[20]

L. Wang and G.-Z. Dai, Global stability of virus spreading in complex heterogeneous networks,, SIAM J. Appl. Math., 68 (2008), 1495.  doi: 10.1137/070694582.  Google Scholar

[21]

R. Yang, B. Wang, J. Ren, W. Bai, Z. Shi, W. Wang and T. Zhou, Epidemic spreading on heterogeneous networks with identical infectivity,, Phys. Lett. A, 364 (2007), 189.  doi: 10.1016/j.physleta.2006.12.021.  Google Scholar

[22]

H. Zhang and X. Fu, Spreading of epidemics on scale-free networks with nonlinear infectivity,, Nonlinear Anal. Theory Methods Appl., 70 (2009), 3273.  doi: 10.1016/j.na.2008.04.031.  Google Scholar

[23]

J. Zhang and J. Sun, Stability analysis of an SIS epidemic model with feedback mechanism on networks,, Physica A, 394 (2014), 24.  doi: 10.1016/j.physa.2013.09.058.  Google Scholar

[24]

J. Zhang and J. Sun, Analysis of epidemic spreading with feedback mechanism in weighted networks,, Int. J. Biomath., 8 (2015).  doi: 10.1142/S1793524515500072.  Google Scholar

[25]

J. Zhang and Z. Jin, The analysis of an epidemic model on networks,, Appl. Math. Comput., 217 (2011), 7053.  doi: 10.1016/j.amc.2010.09.063.  Google Scholar

[26]

G. Zhu, X. Fu and G. Chen, Global attractivity of a network-based epidemic SIS model with nonlinear infectivity,, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2588.  doi: 10.1016/j.cnsns.2011.08.039.  Google Scholar

[27]

G. Zhu, X. Fu and G. Chen, Spreading dynamics and global stability of a generalized epidemic model on complex heterogeneous networks,, Appl. Math. Modell., 36 (2012), 5808.  doi: 10.1016/j.apm.2012.01.023.  Google Scholar

[1]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[2]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[3]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[4]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[5]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[6]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[9]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[10]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[11]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[12]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[13]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[14]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[15]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[16]

Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050

[17]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[18]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[19]

Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360

[20]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]