Citation: |
[1] |
H. Abboubakar, J. C. Kamgang, L. N. Nkamba, D. Tieudjo and L. Emini, Modeling the dynamics of arboviral diseases with vaccination perspective, Biomath, 4 (2015), 1507241, 30pp.doi: 10.11145/j.biomath.2015.07.241. |
[2] |
R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1991. |
[3] |
J. Arino, C. C. MCCluskey and P. Van Den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 64 (2003), 260-276.doi: 10.1137/S0036139902413829. |
[4] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2001.doi: 10.1007/978-1-4757-3516-1. |
[5] |
C. Castillo-Chavez and B. Song, Dynamical model of tuberclosis and their applications, Math.Biosci.Eng, 1 (2004), 361-404.doi: 10.3934/mbe.2004.1.361. |
[6] |
P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6. |
[7] |
C. P. Farrington, On vaccine efficacy and reproduction numbers, Math. Biosci., 185 (2003), 89-109.doi: 10.1016/S0025-5564(03)00061-0. |
[8] |
G. Francois, M. Kew, P. Van Damme, M. J. Mphahlele and A. Meheus, Mutant hepatitis B viruses: A matter of academic interest only or a problem with far-reaching implications, Vaccine, 19 (2001), 3799-3815.doi: 10.1016/S0264-410X(01)00108-6. |
[9] |
M. Ghosh, P. Chandra, P. Sinha and J. B. Shukla, Modelling the spread of carrier-dependent infectious diseases with environmental effect, Appl. Math. Comput., 152 (2004), 385-402.doi: 10.1016/S0096-3003(03)00564-2. |
[10] |
J. Gjorgjieva, K. Smith, G. Chowell, F. Sanchez, J. Snyder and C. Castillo-Chavez, The role of vaccination in the control of SARS, Math. Biosci. Eng., 2 (2005), 753-769.doi: 10.3934/mbe.2005.2.753. |
[11] |
S. Goldstein, F. Zhou, S. C. Hadler, B. P. Bell, E. E. Mast and H. S. Margolis, A mathematical model to estimate global hepatitis B disease burden and vaccination impact, Int. J. Epidemiol., 34 (2005), 1329-1339.doi: 10.1093/ije/dyi206. |
[12] |
B. Gomero, Latin Hypercube Sampling and Partial Rank Correlation Coefficient Analysis Applied to an Optimal Control Problem, Master Thesis, University of Tennessee, Knoxville, 2012. |
[13] |
A. B. Gumel and S. M. Moghadas, A qualitative study of a vaccination model with non-linear incidence, Appl. Math. Comp, 143 (2003), 409-419.doi: 10.1016/S0096-3003(02)00372-7. |
[14] |
H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases, Math. Biosci. Eng., 3 (2006), 513-525.doi: 10.3934/mbe.2006.3.513. |
[15] |
J. M. Hyman and J. Li, Differential susceptibility and infectivity epidemic models, Math. Biosci. Eng., 3 (2006), 89-100.doi: 10.3934/mbe.2006.3.89. |
[16] |
D. Kalajdzievska and M. Y. Li, Modeling the effects of carriers on the transmission dynamics of infectious diseases, Math. Biosci. Eng., 8 (2011), 711-722.doi: 10.3934/mbe.2011.8.711. |
[17] |
J. T. Kemper, The effects of asymptotic attacks on the spread of infectious disease: A deterministic model, Bull. Math. Bio., 40 (1978), 707-718.doi: 10.1007/BF02460601. |
[18] |
A. Korobeinikov, Global properties of sir and seir epidemic models with multiple parallel infectious stages, Bull. Math. Bio., 71 (2009), 75-83.doi: 10.1007/s11538-008-9352-z. |
[19] |
J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976. |
[20] |
S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol, 254 (2008), 178-196.doi: 10.1016/j.jtbi.2008.04.011. |
[21] |
G. F. Medley, N. A. Lindop, W. J. Edmunds and D. J. Nokes, Hepatitis-B virus edemicity: Heterogeneity, catastrophic dynamics and control, Nat. Med., 7 (2001), 617-624. |
[22] |
R. Naresh, S. Pandey and A. K. Misra, Analysis of a vaccination model for carrier dependent infectious diseases with environmental effects, Nonlinear Analysis: Modelling and Control, 13 (2008), 331-350. |
[23] |
M. M. Riggs, A. K. Sethi, T. F. Zabarsky, E. C. Eckstein, R. L. Jump and C. J. Donskey, Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium diffcile strains among long-term care facility residents, Clin. Infect. Dis., 45 (2007), 992-998. |
[24] |
P. Roumagnac, et al., Evolutionary history of Salmonella typhi, Science, 314 (2006), 1301-1304.doi: 10.1126/science.1134933. |
[25] |
C. L. Trotter, N. J. Gay and W. J. Edmunds, Dynamic models of meningococcal carriage, disease, and the impact of serogroup C conjugate vaccination, Am. J. Epidemiol., 162 (2005), 89-100.doi: 10.1093/aje/kwi160. |
[26] |
S. Zhao, Z. Xu and Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China, Int. J. Epidemiol., 29 (2000), 744-752.doi: 10.1093/ije/29.4.744. |
[27] |
L. Zou, W. Zhang and S. Ruan, Modeling the transmission dynamics and control of hepatitis B virus in China, J. Theor. Biol., 262 (2010), 330-338.doi: 10.1016/j.jtbi.2009.09.035. |
[28] |
"The ABCs of Hepatitis", Center for Disease Control and Prevention (CDC), 2015. Available from: http://www.cdc.gov/hepatitis/Resources/Professionals/PDFs/ABCTable.pdf |
[29] |
WHO, "Fact Sheet N$^o$ 204 on Hepatitis B", July 2015. Available from: http://www.who.int/mediacentre/factsheets/fs204/en/ |