• Previous Article
    Modeling eating behaviors: The role of environment and positive food association learning via a Ratatouille effect
  • MBE Home
  • This Issue
  • Next Article
    Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation
2016, 13(4): 813-840. doi: 10.3934/mbe.2016019

Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers

1. 

Department of Mathematics, Faculty of Science, University of Yaounde 1, P.O. Box 812 Yaounde, Cameroon, Cameroon

2. 

Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa, South Africa

Received  August 2015 Revised  January 2016 Published  May 2016

In this paper, an epidemic model is investigated for infectious diseases that can be transmitted through both the infectious individuals and the asymptomatic carriers (i.e., infected individuals who are contagious but do not show any disease symptoms). We propose a dose-structured vaccination model with multiple transmission pathways. Based on the range of the explicitly computed basic reproduction number, we prove the global stability of the disease-free when this threshold number is less or equal to the unity. Moreover, whenever it is greater than one, the existence of the unique endemic equilibrium is shown and its global stability is established for the case where the changes of displaying the disease symptoms are independent of the vulnerable classes. Further, the model is shown to exhibit a transcritical bifurcation with the unit basic reproduction number being the bifurcation parameter. The impacts of the asymptomatic carriers and the effectiveness of vaccination on the disease transmission are discussed through through the local and the global sensitivity analyses of the basic reproduction number. Finally, a case study of hepatitis B virus disease (HBV) is considered, with the numerical simulations presented to support the analytical results. They further suggest that, in high HBV prevalence countries, the combination of effective vaccination (i.e. $\geq 3$ doses of HepB vaccine), the diagnosis of asymptomatic carriers and the treatment of symptomatic carriers may have a much greater positive impact on the disease control.
Citation: Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou. Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences & Engineering, 2016, 13 (4) : 813-840. doi: 10.3934/mbe.2016019
References:
[1]

H. Abboubakar, J. C. Kamgang, L. N. Nkamba, D. Tieudjo and L. Emini, Modeling the dynamics of arboviral diseases with vaccination perspective,, Biomath, 4 (2015).  doi: 10.11145/j.biomath.2015.07.241.  Google Scholar

[2]

R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control,, Oxford University Press, (1991).   Google Scholar

[3]

J. Arino, C. C. MCCluskey and P. Van Den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation,, SIAM J. Appl. Math., 64 (2003), 260.  doi: 10.1137/S0036139902413829.  Google Scholar

[4]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology,, Springer, (2001).  doi: 10.1007/978-1-4757-3516-1.  Google Scholar

[5]

C. Castillo-Chavez and B. Song, Dynamical model of tuberclosis and their applications,, Math.Biosci.Eng, 1 (2004), 361.  doi: 10.3934/mbe.2004.1.361.  Google Scholar

[6]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[7]

C. P. Farrington, On vaccine efficacy and reproduction numbers,, Math. Biosci., 185 (2003), 89.  doi: 10.1016/S0025-5564(03)00061-0.  Google Scholar

[8]

G. Francois, M. Kew, P. Van Damme, M. J. Mphahlele and A. Meheus, Mutant hepatitis B viruses: A matter of academic interest only or a problem with far-reaching implications,, Vaccine, 19 (2001), 3799.  doi: 10.1016/S0264-410X(01)00108-6.  Google Scholar

[9]

M. Ghosh, P. Chandra, P. Sinha and J. B. Shukla, Modelling the spread of carrier-dependent infectious diseases with environmental effect,, Appl. Math. Comput., 152 (2004), 385.  doi: 10.1016/S0096-3003(03)00564-2.  Google Scholar

[10]

J. Gjorgjieva, K. Smith, G. Chowell, F. Sanchez, J. Snyder and C. Castillo-Chavez, The role of vaccination in the control of SARS,, Math. Biosci. Eng., 2 (2005), 753.  doi: 10.3934/mbe.2005.2.753.  Google Scholar

[11]

S. Goldstein, F. Zhou, S. C. Hadler, B. P. Bell, E. E. Mast and H. S. Margolis, A mathematical model to estimate global hepatitis B disease burden and vaccination impact,, Int. J. Epidemiol., 34 (2005), 1329.  doi: 10.1093/ije/dyi206.  Google Scholar

[12]

B. Gomero, Latin Hypercube Sampling and Partial Rank Correlation Coefficient Analysis Applied to an Optimal Control Problem,, Master Thesis, (2012).   Google Scholar

[13]

A. B. Gumel and S. M. Moghadas, A qualitative study of a vaccination model with non-linear incidence,, Appl. Math. Comp, 143 (2003), 409.  doi: 10.1016/S0096-3003(02)00372-7.  Google Scholar

[14]

H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases,, Math. Biosci. Eng., 3 (2006), 513.  doi: 10.3934/mbe.2006.3.513.  Google Scholar

[15]

J. M. Hyman and J. Li, Differential susceptibility and infectivity epidemic models,, Math. Biosci. Eng., 3 (2006), 89.  doi: 10.3934/mbe.2006.3.89.  Google Scholar

[16]

D. Kalajdzievska and M. Y. Li, Modeling the effects of carriers on the transmission dynamics of infectious diseases,, Math. Biosci. Eng., 8 (2011), 711.  doi: 10.3934/mbe.2011.8.711.  Google Scholar

[17]

J. T. Kemper, The effects of asymptotic attacks on the spread of infectious disease: A deterministic model,, Bull. Math. Bio., 40 (1978), 707.  doi: 10.1007/BF02460601.  Google Scholar

[18]

A. Korobeinikov, Global properties of sir and seir epidemic models with multiple parallel infectious stages,, Bull. Math. Bio., 71 (2009), 75.  doi: 10.1007/s11538-008-9352-z.  Google Scholar

[19]

J. P. LaSalle, The Stability of Dynamical Systems,, Regional Conference Series in Applied Mathematics, (1976).   Google Scholar

[20]

S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology,, J. Theor. Biol, 254 (2008), 178.  doi: 10.1016/j.jtbi.2008.04.011.  Google Scholar

[21]

G. F. Medley, N. A. Lindop, W. J. Edmunds and D. J. Nokes, Hepatitis-B virus edemicity: Heterogeneity, catastrophic dynamics and control,, Nat. Med., 7 (2001), 617.   Google Scholar

[22]

R. Naresh, S. Pandey and A. K. Misra, Analysis of a vaccination model for carrier dependent infectious diseases with environmental effects,, Nonlinear Analysis: Modelling and Control, 13 (2008), 331.   Google Scholar

[23]

M. M. Riggs, A. K. Sethi, T. F. Zabarsky, E. C. Eckstein, R. L. Jump and C. J. Donskey, Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium diffcile strains among long-term care facility residents,, Clin. Infect. Dis., 45 (2007), 992.   Google Scholar

[24]

P. Roumagnac, et al., Evolutionary history of Salmonella typhi,, Science, 314 (2006), 1301.  doi: 10.1126/science.1134933.  Google Scholar

[25]

C. L. Trotter, N. J. Gay and W. J. Edmunds, Dynamic models of meningococcal carriage, disease, and the impact of serogroup C conjugate vaccination,, Am. J. Epidemiol., 162 (2005), 89.  doi: 10.1093/aje/kwi160.  Google Scholar

[26]

S. Zhao, Z. Xu and Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China,, Int. J. Epidemiol., 29 (2000), 744.  doi: 10.1093/ije/29.4.744.  Google Scholar

[27]

L. Zou, W. Zhang and S. Ruan, Modeling the transmission dynamics and control of hepatitis B virus in China,, J. Theor. Biol., 262 (2010), 330.  doi: 10.1016/j.jtbi.2009.09.035.  Google Scholar

[28]

"The ABCs of Hepatitis", Center for Disease Control and Prevention (CDC), 2015., Available from: , ().   Google Scholar

[29]

WHO, "Fact Sheet N$^o$ 204 on Hepatitis B",, July 2015. Available from: , (2015).   Google Scholar

show all references

References:
[1]

H. Abboubakar, J. C. Kamgang, L. N. Nkamba, D. Tieudjo and L. Emini, Modeling the dynamics of arboviral diseases with vaccination perspective,, Biomath, 4 (2015).  doi: 10.11145/j.biomath.2015.07.241.  Google Scholar

[2]

R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control,, Oxford University Press, (1991).   Google Scholar

[3]

J. Arino, C. C. MCCluskey and P. Van Den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation,, SIAM J. Appl. Math., 64 (2003), 260.  doi: 10.1137/S0036139902413829.  Google Scholar

[4]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology,, Springer, (2001).  doi: 10.1007/978-1-4757-3516-1.  Google Scholar

[5]

C. Castillo-Chavez and B. Song, Dynamical model of tuberclosis and their applications,, Math.Biosci.Eng, 1 (2004), 361.  doi: 10.3934/mbe.2004.1.361.  Google Scholar

[6]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[7]

C. P. Farrington, On vaccine efficacy and reproduction numbers,, Math. Biosci., 185 (2003), 89.  doi: 10.1016/S0025-5564(03)00061-0.  Google Scholar

[8]

G. Francois, M. Kew, P. Van Damme, M. J. Mphahlele and A. Meheus, Mutant hepatitis B viruses: A matter of academic interest only or a problem with far-reaching implications,, Vaccine, 19 (2001), 3799.  doi: 10.1016/S0264-410X(01)00108-6.  Google Scholar

[9]

M. Ghosh, P. Chandra, P. Sinha and J. B. Shukla, Modelling the spread of carrier-dependent infectious diseases with environmental effect,, Appl. Math. Comput., 152 (2004), 385.  doi: 10.1016/S0096-3003(03)00564-2.  Google Scholar

[10]

J. Gjorgjieva, K. Smith, G. Chowell, F. Sanchez, J. Snyder and C. Castillo-Chavez, The role of vaccination in the control of SARS,, Math. Biosci. Eng., 2 (2005), 753.  doi: 10.3934/mbe.2005.2.753.  Google Scholar

[11]

S. Goldstein, F. Zhou, S. C. Hadler, B. P. Bell, E. E. Mast and H. S. Margolis, A mathematical model to estimate global hepatitis B disease burden and vaccination impact,, Int. J. Epidemiol., 34 (2005), 1329.  doi: 10.1093/ije/dyi206.  Google Scholar

[12]

B. Gomero, Latin Hypercube Sampling and Partial Rank Correlation Coefficient Analysis Applied to an Optimal Control Problem,, Master Thesis, (2012).   Google Scholar

[13]

A. B. Gumel and S. M. Moghadas, A qualitative study of a vaccination model with non-linear incidence,, Appl. Math. Comp, 143 (2003), 409.  doi: 10.1016/S0096-3003(02)00372-7.  Google Scholar

[14]

H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases,, Math. Biosci. Eng., 3 (2006), 513.  doi: 10.3934/mbe.2006.3.513.  Google Scholar

[15]

J. M. Hyman and J. Li, Differential susceptibility and infectivity epidemic models,, Math. Biosci. Eng., 3 (2006), 89.  doi: 10.3934/mbe.2006.3.89.  Google Scholar

[16]

D. Kalajdzievska and M. Y. Li, Modeling the effects of carriers on the transmission dynamics of infectious diseases,, Math. Biosci. Eng., 8 (2011), 711.  doi: 10.3934/mbe.2011.8.711.  Google Scholar

[17]

J. T. Kemper, The effects of asymptotic attacks on the spread of infectious disease: A deterministic model,, Bull. Math. Bio., 40 (1978), 707.  doi: 10.1007/BF02460601.  Google Scholar

[18]

A. Korobeinikov, Global properties of sir and seir epidemic models with multiple parallel infectious stages,, Bull. Math. Bio., 71 (2009), 75.  doi: 10.1007/s11538-008-9352-z.  Google Scholar

[19]

J. P. LaSalle, The Stability of Dynamical Systems,, Regional Conference Series in Applied Mathematics, (1976).   Google Scholar

[20]

S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology,, J. Theor. Biol, 254 (2008), 178.  doi: 10.1016/j.jtbi.2008.04.011.  Google Scholar

[21]

G. F. Medley, N. A. Lindop, W. J. Edmunds and D. J. Nokes, Hepatitis-B virus edemicity: Heterogeneity, catastrophic dynamics and control,, Nat. Med., 7 (2001), 617.   Google Scholar

[22]

R. Naresh, S. Pandey and A. K. Misra, Analysis of a vaccination model for carrier dependent infectious diseases with environmental effects,, Nonlinear Analysis: Modelling and Control, 13 (2008), 331.   Google Scholar

[23]

M. M. Riggs, A. K. Sethi, T. F. Zabarsky, E. C. Eckstein, R. L. Jump and C. J. Donskey, Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium diffcile strains among long-term care facility residents,, Clin. Infect. Dis., 45 (2007), 992.   Google Scholar

[24]

P. Roumagnac, et al., Evolutionary history of Salmonella typhi,, Science, 314 (2006), 1301.  doi: 10.1126/science.1134933.  Google Scholar

[25]

C. L. Trotter, N. J. Gay and W. J. Edmunds, Dynamic models of meningococcal carriage, disease, and the impact of serogroup C conjugate vaccination,, Am. J. Epidemiol., 162 (2005), 89.  doi: 10.1093/aje/kwi160.  Google Scholar

[26]

S. Zhao, Z. Xu and Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China,, Int. J. Epidemiol., 29 (2000), 744.  doi: 10.1093/ije/29.4.744.  Google Scholar

[27]

L. Zou, W. Zhang and S. Ruan, Modeling the transmission dynamics and control of hepatitis B virus in China,, J. Theor. Biol., 262 (2010), 330.  doi: 10.1016/j.jtbi.2009.09.035.  Google Scholar

[28]

"The ABCs of Hepatitis", Center for Disease Control and Prevention (CDC), 2015., Available from: , ().   Google Scholar

[29]

WHO, "Fact Sheet N$^o$ 204 on Hepatitis B",, July 2015. Available from: , (2015).   Google Scholar

[1]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[2]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[3]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[4]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[5]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (113)
  • HTML views (0)
  • Cited by (5)

[Back to Top]