2016, 13(5): 969-980. doi: 10.3934/mbe.2016025

Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation

1. 

Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada

Received  September 2015 Revised  March 2016 Published  July 2016

A patch-structured multigroup-like $SIS$ epidemiological model is proposed to study the spread of the common bed bug infestation. It is shown that the model exhibits global threshold dynamics with the basic reproduction number as the threshold parameter. Costs associated with the disinfestation process are incorporated into setting up the optimization problems. Procedures are proposed and simulated for finding optimal resource allocation strategies to achieve the infestation free state. Our analysis and simulations provide useful insights on how to efficiently distribute the available exterminators among the infested patches for optimal disinfestation management.
Citation: Ali Gharouni, Lin Wang. Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation. Mathematical Biosciences & Engineering, 2016, 13 (5) : 969-980. doi: 10.3934/mbe.2016025
References:
[1]

L. J. S. Allen, F. Brauer, P. van den Driessche and J. Wu, Mathematical Epidemiology,, Springer-Verlag, (2008).  doi: 10.1007/978-3-540-78911-6.  Google Scholar

[2]

C. Boase, Bedbugs-back from the brink,, Pestic. Outlook, 12 (2001), 159.  doi: 10.1039/b106301b.  Google Scholar

[3]

C. Castillo-Chevez and H. R. Thieme, Asymptotically autonomous epidemic models,, Mathematical Population Dynamics: Analysis of Heterogeneity Vol. One: Theory of Epidemics, (1995), 33.   Google Scholar

[4]

CBC News, Bedbug outbreaks hit Saint John, Sept. 22, 2010,, , (2015).   Google Scholar

[5]

CBC News, Saint John hospital hit by bed bugs, Sept. 17, 2010,, , (2015).   Google Scholar

[6]

S. L. Doggett and R. C. Russell, {Bed bugs-latest trends and developments,, Synopsis Aust. Environ. Pest Manag. Assoc. Natl. Conf., (2007), 22.   Google Scholar

[7]

S. L. Doggett and A. E. P.t Managers Association, A Code of Practice for the Control of Bed Bug Infestations in Australia,, {Westmead Hospital, (2011).   Google Scholar

[8]

S. L. Doggett, D. E. Dwyer, P. F. Peñas and R. C. Russell, Bed bugs: clinical relevance and control options,, Clin. Microbiol. Rev. 25 (2012), 25 (2012), 164.  doi: 10.1128/CMR.05015-11.  Google Scholar

[9]

S. L. Doggett, M. J. Geary and R. C. Russell, The resurgence of bed bugs in Australia: With notes on their ecology and control,, Environmental Health, 4 (2004), 30.   Google Scholar

[10]

S. L. Doggett, C. J. Orton, D. G. Lilly and R. C. Russell, {Bed bugs-a growing problem worldwide. Australian and international trends update and causes for concern,, Aust. Environ. Pest Manag. Assoc. NSW Conf. 2011, 2 (2011), 1.   Google Scholar

[11]

S. L. Doggett and R. Russell, {Bed bugs: What the GP needs to know,, Aust. Fam. Physician, 38 (2009), 880.   Google Scholar

[12]

S. L. Doggett and R. C. Russell, The resurgence of bed bugs, Cimex spp. (Hemiptera: Cimicidae) in Australia,, Proc. Sixth Int. Conf. Urban Pests, 6 (2008), 407.   Google Scholar

[13]

P. Georgescu and G. Morosanu, Pest regulation by means of impulsive controls,, Appl. Math. Comput., 190 (2007), 790.  doi: 10.1016/j.amc.2007.01.079.  Google Scholar

[14]

H. J. Harlan, Bed bugs 101: The basics of Cimex lectularius,, Am. Entomol., 52 (2006), 99.   Google Scholar

[15]

S. W. Hwang, T. J. Svoboda, I. J. De Jong, K. J. Kabasele and E. Gogosis, Bed bug infestations in an urban environment,, Emerg. Infect. Dis., 11 (2005), 533.  doi: 10.3201/eid1104.041126.  Google Scholar

[16]

L. Krueger, Features-don't get bitten by the resurgence of bed bugs-properly identifying a bed bug infestation is the key to quick control,, Pest Control, 68 (2000), 58.   Google Scholar

[17]

Y. Kang and C. Castillo-Chavez, Dynamics of SI models with both horizontal and vertical transmissions as well as Allee effects,, Math. Biosci., 248 (2014), 97.  doi: 10.1016/j.mbs.2013.12.006.  Google Scholar

[18]

M. P. Lehnert, R. M. Pereira, P. G. Koehler, W. Walker and M. S. Lehnert, Control of Cimex lectularius using heat combined with dichlorvos resin strips,, Med. Vet. Entomol., 25 (2011), 460.   Google Scholar

[19]

S. M. Moghadas and A. B. Gumel, Global stability of a two-stage epidemic model with generalized non-linear incidence,, Math. Comput. Simulat., 60 (2002), 107.  doi: 10.1016/S0378-4754(02)00002-2.  Google Scholar

[20]

R. K. McCormack and L. J. S. Allen, Disease emergence in multi-host epidemic models,, Mathematical Medicine and Biology, 24 (2007), 17.   Google Scholar

[21]

D. J. Moore and D. M. Miller, Field evaluations of insecticide treatment regimens for control of the common bed bug, Cimex lectularius (L.),, Pest Manag. Sci., 65 (2009), 332.   Google Scholar

[22]

J. D. Murray, Mathematical Biology I: An Introduction,, vol. 17 of Interdisciplinary Applied Mathematics, (2002).   Google Scholar

[23]

J. Paul and J. Bates, Is infestation with the common bedbug increasing,, BMJ, 320 (2000), 1141.  doi: 10.1136/bmj.320.7242.1141.  Google Scholar

[24]

C. Paulhus and X.-S. Wang, Global stability analysis of a delayed susceptible-infected-susceptible epidemic model,, J. Biol. Dyn., 9 (2014), 45.  doi: 10.1080/17513758.2014.931474.  Google Scholar

[25]

M. Pfiester, P. G. Koehler and R. M. Pereira, Effect of population structure and size on aggregation behavior of Cimex lectularius (Hemiptera: Cimicidae),, J. Med. Entomol., 46 (2009), 1015.   Google Scholar

[26]

L. J. Pinto, R. Cooper and S. K. Kraft, Bed Bug Handbook: The Complete Guide to Bed Bugs and Their Control,, MD: Pinto & Associates, (2008).   Google Scholar

[27]

K. Reinhardt and M. T. Siva-Jothy, Biology of the bed bugs (Cimicidae),, Annu. Rev. Entomol., 52 (2007), 351.   Google Scholar

[28]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, AMS Math. Surveys and Monographs, (1995).   Google Scholar

[29]

Statistics Canada, 2011 Census, , ().   Google Scholar

[30]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,, Nonlinear Anal. Real World Appl., 13 (2012), 1581.  doi: 10.1016/j.nonrwa.2011.11.016.  Google Scholar

[31]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[32]

E. L. Vargo, W. Booth, V. Saenz, R. G. Santangelo, C. Schal, W. H. Robinson and A. E. de Carvalho Campos, Genetic analysis of bed bug infestations and populations,, 7th Int. Conf. Urban Pests, 7 (2011), 319.   Google Scholar

[33]

C. Wang and X. Wen, Bed bug infestations and control practices in China: Implications for fighting the global bed bug resurgence},, Insects, 2 (2011), 83.  doi: 10.3390/insects2020083.  Google Scholar

[34]

L. Wang and B. Wood, An epidemiological approach to model the viral propagation of memes,, Appl. Math. Model., 35 (2011), 5442.  doi: 10.1016/j.apm.2011.04.035.  Google Scholar

[35]

Z. Xiang, Y. Li and X. Song, Dynamic analysis of a pest management SEI model with saturation incidence concerning impulsive control strategy,, Nonlinear Anal. Real World Appl., 10 (2009), 2335.  doi: 10.1016/j.nonrwa.2008.04.017.  Google Scholar

[36]

Z. Yuan and L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates,, Nonlinear Anal. Real World Appl., 11 (2010), 995.  doi: 10.1016/j.nonrwa.2009.01.040.  Google Scholar

[37]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations,, Canad. Appl. Math. Quart., 4 (1996), 421.   Google Scholar

show all references

References:
[1]

L. J. S. Allen, F. Brauer, P. van den Driessche and J. Wu, Mathematical Epidemiology,, Springer-Verlag, (2008).  doi: 10.1007/978-3-540-78911-6.  Google Scholar

[2]

C. Boase, Bedbugs-back from the brink,, Pestic. Outlook, 12 (2001), 159.  doi: 10.1039/b106301b.  Google Scholar

[3]

C. Castillo-Chevez and H. R. Thieme, Asymptotically autonomous epidemic models,, Mathematical Population Dynamics: Analysis of Heterogeneity Vol. One: Theory of Epidemics, (1995), 33.   Google Scholar

[4]

CBC News, Bedbug outbreaks hit Saint John, Sept. 22, 2010,, , (2015).   Google Scholar

[5]

CBC News, Saint John hospital hit by bed bugs, Sept. 17, 2010,, , (2015).   Google Scholar

[6]

S. L. Doggett and R. C. Russell, {Bed bugs-latest trends and developments,, Synopsis Aust. Environ. Pest Manag. Assoc. Natl. Conf., (2007), 22.   Google Scholar

[7]

S. L. Doggett and A. E. P.t Managers Association, A Code of Practice for the Control of Bed Bug Infestations in Australia,, {Westmead Hospital, (2011).   Google Scholar

[8]

S. L. Doggett, D. E. Dwyer, P. F. Peñas and R. C. Russell, Bed bugs: clinical relevance and control options,, Clin. Microbiol. Rev. 25 (2012), 25 (2012), 164.  doi: 10.1128/CMR.05015-11.  Google Scholar

[9]

S. L. Doggett, M. J. Geary and R. C. Russell, The resurgence of bed bugs in Australia: With notes on their ecology and control,, Environmental Health, 4 (2004), 30.   Google Scholar

[10]

S. L. Doggett, C. J. Orton, D. G. Lilly and R. C. Russell, {Bed bugs-a growing problem worldwide. Australian and international trends update and causes for concern,, Aust. Environ. Pest Manag. Assoc. NSW Conf. 2011, 2 (2011), 1.   Google Scholar

[11]

S. L. Doggett and R. Russell, {Bed bugs: What the GP needs to know,, Aust. Fam. Physician, 38 (2009), 880.   Google Scholar

[12]

S. L. Doggett and R. C. Russell, The resurgence of bed bugs, Cimex spp. (Hemiptera: Cimicidae) in Australia,, Proc. Sixth Int. Conf. Urban Pests, 6 (2008), 407.   Google Scholar

[13]

P. Georgescu and G. Morosanu, Pest regulation by means of impulsive controls,, Appl. Math. Comput., 190 (2007), 790.  doi: 10.1016/j.amc.2007.01.079.  Google Scholar

[14]

H. J. Harlan, Bed bugs 101: The basics of Cimex lectularius,, Am. Entomol., 52 (2006), 99.   Google Scholar

[15]

S. W. Hwang, T. J. Svoboda, I. J. De Jong, K. J. Kabasele and E. Gogosis, Bed bug infestations in an urban environment,, Emerg. Infect. Dis., 11 (2005), 533.  doi: 10.3201/eid1104.041126.  Google Scholar

[16]

L. Krueger, Features-don't get bitten by the resurgence of bed bugs-properly identifying a bed bug infestation is the key to quick control,, Pest Control, 68 (2000), 58.   Google Scholar

[17]

Y. Kang and C. Castillo-Chavez, Dynamics of SI models with both horizontal and vertical transmissions as well as Allee effects,, Math. Biosci., 248 (2014), 97.  doi: 10.1016/j.mbs.2013.12.006.  Google Scholar

[18]

M. P. Lehnert, R. M. Pereira, P. G. Koehler, W. Walker and M. S. Lehnert, Control of Cimex lectularius using heat combined with dichlorvos resin strips,, Med. Vet. Entomol., 25 (2011), 460.   Google Scholar

[19]

S. M. Moghadas and A. B. Gumel, Global stability of a two-stage epidemic model with generalized non-linear incidence,, Math. Comput. Simulat., 60 (2002), 107.  doi: 10.1016/S0378-4754(02)00002-2.  Google Scholar

[20]

R. K. McCormack and L. J. S. Allen, Disease emergence in multi-host epidemic models,, Mathematical Medicine and Biology, 24 (2007), 17.   Google Scholar

[21]

D. J. Moore and D. M. Miller, Field evaluations of insecticide treatment regimens for control of the common bed bug, Cimex lectularius (L.),, Pest Manag. Sci., 65 (2009), 332.   Google Scholar

[22]

J. D. Murray, Mathematical Biology I: An Introduction,, vol. 17 of Interdisciplinary Applied Mathematics, (2002).   Google Scholar

[23]

J. Paul and J. Bates, Is infestation with the common bedbug increasing,, BMJ, 320 (2000), 1141.  doi: 10.1136/bmj.320.7242.1141.  Google Scholar

[24]

C. Paulhus and X.-S. Wang, Global stability analysis of a delayed susceptible-infected-susceptible epidemic model,, J. Biol. Dyn., 9 (2014), 45.  doi: 10.1080/17513758.2014.931474.  Google Scholar

[25]

M. Pfiester, P. G. Koehler and R. M. Pereira, Effect of population structure and size on aggregation behavior of Cimex lectularius (Hemiptera: Cimicidae),, J. Med. Entomol., 46 (2009), 1015.   Google Scholar

[26]

L. J. Pinto, R. Cooper and S. K. Kraft, Bed Bug Handbook: The Complete Guide to Bed Bugs and Their Control,, MD: Pinto & Associates, (2008).   Google Scholar

[27]

K. Reinhardt and M. T. Siva-Jothy, Biology of the bed bugs (Cimicidae),, Annu. Rev. Entomol., 52 (2007), 351.   Google Scholar

[28]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, AMS Math. Surveys and Monographs, (1995).   Google Scholar

[29]

Statistics Canada, 2011 Census, , ().   Google Scholar

[30]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,, Nonlinear Anal. Real World Appl., 13 (2012), 1581.  doi: 10.1016/j.nonrwa.2011.11.016.  Google Scholar

[31]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[32]

E. L. Vargo, W. Booth, V. Saenz, R. G. Santangelo, C. Schal, W. H. Robinson and A. E. de Carvalho Campos, Genetic analysis of bed bug infestations and populations,, 7th Int. Conf. Urban Pests, 7 (2011), 319.   Google Scholar

[33]

C. Wang and X. Wen, Bed bug infestations and control practices in China: Implications for fighting the global bed bug resurgence},, Insects, 2 (2011), 83.  doi: 10.3390/insects2020083.  Google Scholar

[34]

L. Wang and B. Wood, An epidemiological approach to model the viral propagation of memes,, Appl. Math. Model., 35 (2011), 5442.  doi: 10.1016/j.apm.2011.04.035.  Google Scholar

[35]

Z. Xiang, Y. Li and X. Song, Dynamic analysis of a pest management SEI model with saturation incidence concerning impulsive control strategy,, Nonlinear Anal. Real World Appl., 10 (2009), 2335.  doi: 10.1016/j.nonrwa.2008.04.017.  Google Scholar

[36]

Z. Yuan and L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates,, Nonlinear Anal. Real World Appl., 11 (2010), 995.  doi: 10.1016/j.nonrwa.2009.01.040.  Google Scholar

[37]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations,, Canad. Appl. Math. Quart., 4 (1996), 421.   Google Scholar

[1]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[2]

Yijun Lou, Xiao-Qiang Zhao. Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 169-186. doi: 10.3934/dcdsb.2009.12.169

[3]

Jing Ge, Zhigui Lin, Huaiping Zhu. Environmental risks in a diffusive SIS model incorporating use efficiency of the medical resource. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1469-1481. doi: 10.3934/dcdsb.2016007

[4]

Semu Mitiku Kassa. Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences & Engineering, 2018, 15 (1) : 255-273. doi: 10.3934/mbe.2018011

[5]

Xinli Hu. Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences & Engineering, 2012, 9 (1) : 111-122. doi: 10.3934/mbe.2012.9.111

[6]

Irina Kareva, Faina Berezovkaya, Georgy Karev. Mixed strategies and natural selection in resource allocation. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1561-1586. doi: 10.3934/mbe.2013.10.1561

[7]

Jia-Feng Cao, Wan-Tong Li, Fei-Ying Yang. Dynamics of a nonlocal SIS epidemic model with free boundary. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 247-266. doi: 10.3934/dcdsb.2017013

[8]

Fei-Ying Yang, Wan-Tong Li. Dynamics of a nonlocal dispersal SIS epidemic model. Communications on Pure & Applied Analysis, 2017, 16 (3) : 781-798. doi: 10.3934/cpaa.2017037

[9]

Zhenguo Bai, Yicang Zhou. Threshold dynamics of a bacillary dysentery model with seasonal fluctuation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 1-14. doi: 10.3934/dcdsb.2011.15.1

[10]

Qinglan Xia, Shaofeng Xu. On the ramified optimal allocation problem. Networks & Heterogeneous Media, 2013, 8 (2) : 591-624. doi: 10.3934/nhm.2013.8.591

[11]

Jafar Sadeghi, Mojtaba Ghiyasi, Akram Dehnokhalaji. Resource allocation and target setting based on virtual profit improvement. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019043

[12]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

[13]

Hui Meng, Fei Lung Yuen, Tak Kuen Siu, Hailiang Yang. Optimal portfolio in a continuous-time self-exciting threshold model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 487-504. doi: 10.3934/jimo.2013.9.487

[14]

Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039

[15]

Lin Zhao, Zhi-Cheng Wang, Liang Zhang. Threshold dynamics of a time periodic and two–group epidemic model with distributed delay. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1535-1563. doi: 10.3934/mbe.2017080

[16]

Toshikazu Kuniya, Yoshiaki Muroya, Yoichi Enatsu. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1375-1393. doi: 10.3934/mbe.2014.11.1375

[17]

Liang Zhang, Zhi-Cheng Wang. Threshold dynamics of a reaction-diffusion epidemic model with stage structure. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3797-3820. doi: 10.3934/dcdsb.2017191

[18]

Zhenguo Bai. Threshold dynamics of a periodic SIR model with delay in an infected compartment. Mathematical Biosciences & Engineering, 2015, 12 (3) : 555-564. doi: 10.3934/mbe.2015.12.555

[19]

Adel Settati, Aadil Lahrouz, Mustapha El Jarroudi, Mohamed El Fatini, Kai Wang. On the threshold dynamics of the stochastic SIRS epidemic model using adequate stopping times. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020012

[20]

Bassidy Dembele, Abdul-Aziz Yakubu. Optimal treated mosquito bed nets and insecticides for eradication of malaria in Missira. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1831-1840. doi: 10.3934/dcdsb.2012.17.1831

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]