2016, 13(5): 969-980. doi: 10.3934/mbe.2016025

Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation

1. 

Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada

Received  September 2015 Revised  March 2016 Published  July 2016

A patch-structured multigroup-like $SIS$ epidemiological model is proposed to study the spread of the common bed bug infestation. It is shown that the model exhibits global threshold dynamics with the basic reproduction number as the threshold parameter. Costs associated with the disinfestation process are incorporated into setting up the optimization problems. Procedures are proposed and simulated for finding optimal resource allocation strategies to achieve the infestation free state. Our analysis and simulations provide useful insights on how to efficiently distribute the available exterminators among the infested patches for optimal disinfestation management.
Citation: Ali Gharouni, Lin Wang. Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation. Mathematical Biosciences & Engineering, 2016, 13 (5) : 969-980. doi: 10.3934/mbe.2016025
References:
[1]

L. J. S. Allen, F. Brauer, P. van den Driessche and J. Wu, Mathematical Epidemiology,, Springer-Verlag, (2008).  doi: 10.1007/978-3-540-78911-6.  Google Scholar

[2]

C. Boase, Bedbugs-back from the brink,, Pestic. Outlook, 12 (2001), 159.  doi: 10.1039/b106301b.  Google Scholar

[3]

C. Castillo-Chevez and H. R. Thieme, Asymptotically autonomous epidemic models,, Mathematical Population Dynamics: Analysis of Heterogeneity Vol. One: Theory of Epidemics, (1995), 33.   Google Scholar

[4]

CBC News, Bedbug outbreaks hit Saint John, Sept. 22, 2010,, , (2015).   Google Scholar

[5]

CBC News, Saint John hospital hit by bed bugs, Sept. 17, 2010,, , (2015).   Google Scholar

[6]

S. L. Doggett and R. C. Russell, {Bed bugs-latest trends and developments,, Synopsis Aust. Environ. Pest Manag. Assoc. Natl. Conf., (2007), 22.   Google Scholar

[7]

S. L. Doggett and A. E. P.t Managers Association, A Code of Practice for the Control of Bed Bug Infestations in Australia,, {Westmead Hospital, (2011).   Google Scholar

[8]

S. L. Doggett, D. E. Dwyer, P. F. Peñas and R. C. Russell, Bed bugs: clinical relevance and control options,, Clin. Microbiol. Rev. 25 (2012), 25 (2012), 164.  doi: 10.1128/CMR.05015-11.  Google Scholar

[9]

S. L. Doggett, M. J. Geary and R. C. Russell, The resurgence of bed bugs in Australia: With notes on their ecology and control,, Environmental Health, 4 (2004), 30.   Google Scholar

[10]

S. L. Doggett, C. J. Orton, D. G. Lilly and R. C. Russell, {Bed bugs-a growing problem worldwide. Australian and international trends update and causes for concern,, Aust. Environ. Pest Manag. Assoc. NSW Conf. 2011, 2 (2011), 1.   Google Scholar

[11]

S. L. Doggett and R. Russell, {Bed bugs: What the GP needs to know,, Aust. Fam. Physician, 38 (2009), 880.   Google Scholar

[12]

S. L. Doggett and R. C. Russell, The resurgence of bed bugs, Cimex spp. (Hemiptera: Cimicidae) in Australia,, Proc. Sixth Int. Conf. Urban Pests, 6 (2008), 407.   Google Scholar

[13]

P. Georgescu and G. Morosanu, Pest regulation by means of impulsive controls,, Appl. Math. Comput., 190 (2007), 790.  doi: 10.1016/j.amc.2007.01.079.  Google Scholar

[14]

H. J. Harlan, Bed bugs 101: The basics of Cimex lectularius,, Am. Entomol., 52 (2006), 99.   Google Scholar

[15]

S. W. Hwang, T. J. Svoboda, I. J. De Jong, K. J. Kabasele and E. Gogosis, Bed bug infestations in an urban environment,, Emerg. Infect. Dis., 11 (2005), 533.  doi: 10.3201/eid1104.041126.  Google Scholar

[16]

L. Krueger, Features-don't get bitten by the resurgence of bed bugs-properly identifying a bed bug infestation is the key to quick control,, Pest Control, 68 (2000), 58.   Google Scholar

[17]

Y. Kang and C. Castillo-Chavez, Dynamics of SI models with both horizontal and vertical transmissions as well as Allee effects,, Math. Biosci., 248 (2014), 97.  doi: 10.1016/j.mbs.2013.12.006.  Google Scholar

[18]

M. P. Lehnert, R. M. Pereira, P. G. Koehler, W. Walker and M. S. Lehnert, Control of Cimex lectularius using heat combined with dichlorvos resin strips,, Med. Vet. Entomol., 25 (2011), 460.   Google Scholar

[19]

S. M. Moghadas and A. B. Gumel, Global stability of a two-stage epidemic model with generalized non-linear incidence,, Math. Comput. Simulat., 60 (2002), 107.  doi: 10.1016/S0378-4754(02)00002-2.  Google Scholar

[20]

R. K. McCormack and L. J. S. Allen, Disease emergence in multi-host epidemic models,, Mathematical Medicine and Biology, 24 (2007), 17.   Google Scholar

[21]

D. J. Moore and D. M. Miller, Field evaluations of insecticide treatment regimens for control of the common bed bug, Cimex lectularius (L.),, Pest Manag. Sci., 65 (2009), 332.   Google Scholar

[22]

J. D. Murray, Mathematical Biology I: An Introduction,, vol. 17 of Interdisciplinary Applied Mathematics, (2002).   Google Scholar

[23]

J. Paul and J. Bates, Is infestation with the common bedbug increasing,, BMJ, 320 (2000), 1141.  doi: 10.1136/bmj.320.7242.1141.  Google Scholar

[24]

C. Paulhus and X.-S. Wang, Global stability analysis of a delayed susceptible-infected-susceptible epidemic model,, J. Biol. Dyn., 9 (2014), 45.  doi: 10.1080/17513758.2014.931474.  Google Scholar

[25]

M. Pfiester, P. G. Koehler and R. M. Pereira, Effect of population structure and size on aggregation behavior of Cimex lectularius (Hemiptera: Cimicidae),, J. Med. Entomol., 46 (2009), 1015.   Google Scholar

[26]

L. J. Pinto, R. Cooper and S. K. Kraft, Bed Bug Handbook: The Complete Guide to Bed Bugs and Their Control,, MD: Pinto & Associates, (2008).   Google Scholar

[27]

K. Reinhardt and M. T. Siva-Jothy, Biology of the bed bugs (Cimicidae),, Annu. Rev. Entomol., 52 (2007), 351.   Google Scholar

[28]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, AMS Math. Surveys and Monographs, (1995).   Google Scholar

[29]

Statistics Canada, 2011 Census, , ().   Google Scholar

[30]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,, Nonlinear Anal. Real World Appl., 13 (2012), 1581.  doi: 10.1016/j.nonrwa.2011.11.016.  Google Scholar

[31]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[32]

E. L. Vargo, W. Booth, V. Saenz, R. G. Santangelo, C. Schal, W. H. Robinson and A. E. de Carvalho Campos, Genetic analysis of bed bug infestations and populations,, 7th Int. Conf. Urban Pests, 7 (2011), 319.   Google Scholar

[33]

C. Wang and X. Wen, Bed bug infestations and control practices in China: Implications for fighting the global bed bug resurgence},, Insects, 2 (2011), 83.  doi: 10.3390/insects2020083.  Google Scholar

[34]

L. Wang and B. Wood, An epidemiological approach to model the viral propagation of memes,, Appl. Math. Model., 35 (2011), 5442.  doi: 10.1016/j.apm.2011.04.035.  Google Scholar

[35]

Z. Xiang, Y. Li and X. Song, Dynamic analysis of a pest management SEI model with saturation incidence concerning impulsive control strategy,, Nonlinear Anal. Real World Appl., 10 (2009), 2335.  doi: 10.1016/j.nonrwa.2008.04.017.  Google Scholar

[36]

Z. Yuan and L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates,, Nonlinear Anal. Real World Appl., 11 (2010), 995.  doi: 10.1016/j.nonrwa.2009.01.040.  Google Scholar

[37]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations,, Canad. Appl. Math. Quart., 4 (1996), 421.   Google Scholar

show all references

References:
[1]

L. J. S. Allen, F. Brauer, P. van den Driessche and J. Wu, Mathematical Epidemiology,, Springer-Verlag, (2008).  doi: 10.1007/978-3-540-78911-6.  Google Scholar

[2]

C. Boase, Bedbugs-back from the brink,, Pestic. Outlook, 12 (2001), 159.  doi: 10.1039/b106301b.  Google Scholar

[3]

C. Castillo-Chevez and H. R. Thieme, Asymptotically autonomous epidemic models,, Mathematical Population Dynamics: Analysis of Heterogeneity Vol. One: Theory of Epidemics, (1995), 33.   Google Scholar

[4]

CBC News, Bedbug outbreaks hit Saint John, Sept. 22, 2010,, , (2015).   Google Scholar

[5]

CBC News, Saint John hospital hit by bed bugs, Sept. 17, 2010,, , (2015).   Google Scholar

[6]

S. L. Doggett and R. C. Russell, {Bed bugs-latest trends and developments,, Synopsis Aust. Environ. Pest Manag. Assoc. Natl. Conf., (2007), 22.   Google Scholar

[7]

S. L. Doggett and A. E. P.t Managers Association, A Code of Practice for the Control of Bed Bug Infestations in Australia,, {Westmead Hospital, (2011).   Google Scholar

[8]

S. L. Doggett, D. E. Dwyer, P. F. Peñas and R. C. Russell, Bed bugs: clinical relevance and control options,, Clin. Microbiol. Rev. 25 (2012), 25 (2012), 164.  doi: 10.1128/CMR.05015-11.  Google Scholar

[9]

S. L. Doggett, M. J. Geary and R. C. Russell, The resurgence of bed bugs in Australia: With notes on their ecology and control,, Environmental Health, 4 (2004), 30.   Google Scholar

[10]

S. L. Doggett, C. J. Orton, D. G. Lilly and R. C. Russell, {Bed bugs-a growing problem worldwide. Australian and international trends update and causes for concern,, Aust. Environ. Pest Manag. Assoc. NSW Conf. 2011, 2 (2011), 1.   Google Scholar

[11]

S. L. Doggett and R. Russell, {Bed bugs: What the GP needs to know,, Aust. Fam. Physician, 38 (2009), 880.   Google Scholar

[12]

S. L. Doggett and R. C. Russell, The resurgence of bed bugs, Cimex spp. (Hemiptera: Cimicidae) in Australia,, Proc. Sixth Int. Conf. Urban Pests, 6 (2008), 407.   Google Scholar

[13]

P. Georgescu and G. Morosanu, Pest regulation by means of impulsive controls,, Appl. Math. Comput., 190 (2007), 790.  doi: 10.1016/j.amc.2007.01.079.  Google Scholar

[14]

H. J. Harlan, Bed bugs 101: The basics of Cimex lectularius,, Am. Entomol., 52 (2006), 99.   Google Scholar

[15]

S. W. Hwang, T. J. Svoboda, I. J. De Jong, K. J. Kabasele and E. Gogosis, Bed bug infestations in an urban environment,, Emerg. Infect. Dis., 11 (2005), 533.  doi: 10.3201/eid1104.041126.  Google Scholar

[16]

L. Krueger, Features-don't get bitten by the resurgence of bed bugs-properly identifying a bed bug infestation is the key to quick control,, Pest Control, 68 (2000), 58.   Google Scholar

[17]

Y. Kang and C. Castillo-Chavez, Dynamics of SI models with both horizontal and vertical transmissions as well as Allee effects,, Math. Biosci., 248 (2014), 97.  doi: 10.1016/j.mbs.2013.12.006.  Google Scholar

[18]

M. P. Lehnert, R. M. Pereira, P. G. Koehler, W. Walker and M. S. Lehnert, Control of Cimex lectularius using heat combined with dichlorvos resin strips,, Med. Vet. Entomol., 25 (2011), 460.   Google Scholar

[19]

S. M. Moghadas and A. B. Gumel, Global stability of a two-stage epidemic model with generalized non-linear incidence,, Math. Comput. Simulat., 60 (2002), 107.  doi: 10.1016/S0378-4754(02)00002-2.  Google Scholar

[20]

R. K. McCormack and L. J. S. Allen, Disease emergence in multi-host epidemic models,, Mathematical Medicine and Biology, 24 (2007), 17.   Google Scholar

[21]

D. J. Moore and D. M. Miller, Field evaluations of insecticide treatment regimens for control of the common bed bug, Cimex lectularius (L.),, Pest Manag. Sci., 65 (2009), 332.   Google Scholar

[22]

J. D. Murray, Mathematical Biology I: An Introduction,, vol. 17 of Interdisciplinary Applied Mathematics, (2002).   Google Scholar

[23]

J. Paul and J. Bates, Is infestation with the common bedbug increasing,, BMJ, 320 (2000), 1141.  doi: 10.1136/bmj.320.7242.1141.  Google Scholar

[24]

C. Paulhus and X.-S. Wang, Global stability analysis of a delayed susceptible-infected-susceptible epidemic model,, J. Biol. Dyn., 9 (2014), 45.  doi: 10.1080/17513758.2014.931474.  Google Scholar

[25]

M. Pfiester, P. G. Koehler and R. M. Pereira, Effect of population structure and size on aggregation behavior of Cimex lectularius (Hemiptera: Cimicidae),, J. Med. Entomol., 46 (2009), 1015.   Google Scholar

[26]

L. J. Pinto, R. Cooper and S. K. Kraft, Bed Bug Handbook: The Complete Guide to Bed Bugs and Their Control,, MD: Pinto & Associates, (2008).   Google Scholar

[27]

K. Reinhardt and M. T. Siva-Jothy, Biology of the bed bugs (Cimicidae),, Annu. Rev. Entomol., 52 (2007), 351.   Google Scholar

[28]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, AMS Math. Surveys and Monographs, (1995).   Google Scholar

[29]

Statistics Canada, 2011 Census, , ().   Google Scholar

[30]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,, Nonlinear Anal. Real World Appl., 13 (2012), 1581.  doi: 10.1016/j.nonrwa.2011.11.016.  Google Scholar

[31]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[32]

E. L. Vargo, W. Booth, V. Saenz, R. G. Santangelo, C. Schal, W. H. Robinson and A. E. de Carvalho Campos, Genetic analysis of bed bug infestations and populations,, 7th Int. Conf. Urban Pests, 7 (2011), 319.   Google Scholar

[33]

C. Wang and X. Wen, Bed bug infestations and control practices in China: Implications for fighting the global bed bug resurgence},, Insects, 2 (2011), 83.  doi: 10.3390/insects2020083.  Google Scholar

[34]

L. Wang and B. Wood, An epidemiological approach to model the viral propagation of memes,, Appl. Math. Model., 35 (2011), 5442.  doi: 10.1016/j.apm.2011.04.035.  Google Scholar

[35]

Z. Xiang, Y. Li and X. Song, Dynamic analysis of a pest management SEI model with saturation incidence concerning impulsive control strategy,, Nonlinear Anal. Real World Appl., 10 (2009), 2335.  doi: 10.1016/j.nonrwa.2008.04.017.  Google Scholar

[36]

Z. Yuan and L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates,, Nonlinear Anal. Real World Appl., 11 (2010), 995.  doi: 10.1016/j.nonrwa.2009.01.040.  Google Scholar

[37]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations,, Canad. Appl. Math. Quart., 4 (1996), 421.   Google Scholar

[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[6]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[7]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[8]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[9]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[10]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[11]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[12]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[13]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[14]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[15]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[16]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[17]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[18]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[19]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[20]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (113)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]