• Previous Article
    Heterogeneous population dynamics and scaling laws near epidemic outbreaks
  • MBE Home
  • This Issue
  • Next Article
    Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy
2016, 13(5): 1077-1092. doi: 10.3934/mbe.2016031

A two-sex matrix population model to represent harem structure

1. 

Department of Mathematics and Statistics, James Madison University, Harrisonburg, VA 22807, United States

2. 

Centro de Estudios Parasitológicos y de Vectores (CEPAVE, CONICET-CCT-La Plata, UNLP), Universidad Nacional de La Plata, La Plata, Prov. de Buenos Aires, Argentina, Argentina

Received  December 2014 Revised  April 2016 Published  July 2016

Population dynamic models often include males in the calculation of population change, but even in those cases males have rarely been introduced to represent polygyny (harem social structure), where it is particularly important to include males in the reproductive performance of the population. In this article we develop an adaptable matrix population modeling framework for species that have a harem-like social structure under an assumption that the transitions from newborn to juvenile and juvenile to adult both take one time step. We are able to calculate not only the growth rates and stable stage distributions, but also the mathematical expressions for harem size for this model. We then provide applications of this model to two mammal species with slightly different harem behavior.
Citation: Anthony Tongen, María Zubillaga, Jorge E. Rabinovich. A two-sex matrix population model to represent harem structure. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1077-1092. doi: 10.3934/mbe.2016031
References:
[1]

J. Ballou and K. Ralls, Inbreeding and juvenile mortality in small populations of ungulates: A detailed analysis,, Biological Conservation, 24 (1982), 239.  doi: 10.1016/0006-3207(82)90014-3.  Google Scholar

[2]

B. J. Brennan, S. M. Flaxman and S. H. Alonzo, Female alternative reproductive behaviors: The effect of female group size on mate assessment and copying,, Journal of Theoretical Biology, 253 (2008), 561.  doi: 10.1016/j.jtbi.2008.04.003.  Google Scholar

[3]

H. Caswell, Matrix Population Models: Construction, Analysis, and Interpretation,, Sinauer Associates, (2001).   Google Scholar

[4]

H. Caswell and D. E. Weeks, Two-sex models: Chaos, extinction, and other dynamic consequences of sex,, The American Naturalist, 128 (1986), 707.  doi: 10.1086/284598.  Google Scholar

[5]

T. Coulson, E. J. Milner Gulland and T. Clutton Brock, The relative roles of density and climatic variation on population dynamics and fecundity rates in three contrasting ungulate species,, Proceedings of the Royal Society of London B: Biological Sciences, 267 (2000), 1771.  doi: 10.1098/rspb.2000.1209.  Google Scholar

[6]

W. Franklin, Contrasting socioecologies of south america?s wild camelids: the vicu na and the guanaco,, Special Publication of the American Society for Mammalogy, 7 (1983), 573.   Google Scholar

[7]

M. Franz, O. Schülke and J. Ostner, Rapid evolution of cooperation in group-living animals,, BMC Evolutionary Biology, 13 (2013), 0.  doi: 10.1186/1471-2148-13-235.  Google Scholar

[8]

C. Haridas, E. A. Eager, R. Rebarber and B. Tenhumberg, Frequency-dependent population dynamics: Effect of sex ratio and mating system on the elasticity of population growth rate,, Theoretical Population Biology, 97 (2014), 49.  doi: 10.1016/j.tpb.2014.08.003.  Google Scholar

[9]

A. Horev, R. Yosef, P. Tryjanowski and O. Ovadia, Consequences of variation in male harem size to population persistence: Modeling poaching and extinction risk of bengal tigers (panthera tigris),, Biological Conservation, 147 (2012), 22.  doi: 10.1016/j.biocon.2012.01.012.  Google Scholar

[10]

R. Jefferson, Size and Spacing of the Sedentary Guanaco Family Groups,, Master's thesis, (1980).   Google Scholar

[11]

A. Jensen, Sex and age structured matrix model applied to harvesting a white tailed deer population,, Ecological Modelling, 128 (2000), 245.  doi: 10.1016/S0304-3800(00)00198-8.  Google Scholar

[12]

R. Lancia, K. Pollock, J. Bishir and M. Conner, A white-tailed deer harvesting strategy,, Journal of Wildlife Management, 52 (1988), 589.  doi: 10.2307/3800912.  Google Scholar

[13]

R. Langvatn and A. Loison, Consequences of harvesting on age structure, sex ratio and population dynamics of red deer Cervus elaphus in central norway,, Wildlife Biology, 5 (1999), 213.   Google Scholar

[14]

K. G. Magnusson and T. Kasuya, Mating strategies in whale populations: Searching strategy vs. harem strategy,, Ecological Modelling, 102 (1997), 225.  doi: 10.1016/S0304-3800(97)00058-6.  Google Scholar

[15]

L. Marescot, O. Gimenez, C. Duchamp, E. Marboutin and G. Chapron, Reducing matrix population models with application to social animal species,, Ecological Modelling, 232 (2012), 91.  doi: 10.1016/j.ecolmodel.2012.02.017.  Google Scholar

[16]

A. Marino and R. Baldi, Ecological correlates of group-size variation in a resource-defense ungulate, the sedentary guanaco,, PLoS ONE, 9 (2014).  doi: 10.1371/journal.pone.0089060.  Google Scholar

[17]

E. Milner-Gulland, A dynamic game model for the decision to join an aggregation,, Ecological Modelling, 145 (2001), 85.   Google Scholar

[18]

A. Moller, Sexual selection and extinction: why sex matters and why asexual models are insufficient,, Annales Zoologici Fennici, 40 (2003), 221.   Google Scholar

[19]

S. Puig and F. Videla, Comportamiento y organizacion social del guanaco,, in Tecnicas para el Manejo de Guanacos (ed. Santiago), (1995), 97.   Google Scholar

[20]

J. Pérez-González and J. Carranza, Female aggregation interacts with population structure to influence the degree of polygyny in red deer,, Animal Behaviour, 82 (2011), 957.   Google Scholar

[21]

J. Rabinovich and M. Zubillaga, Informe Final del proyecto: "Modelo de manejo de poblaciones de guanacos para la Provincia del Chubut", 2012,, URL , ().   Google Scholar

[22]

D. J. Rankin and H. Kokko, Do males matter? the role of males in population dynamics,, Oikos, 116 (2007), 335.  doi: 10.1111/j.0030-1299.2007.15451.x.  Google Scholar

[23]

A. O. Shelton, The ecological and evolutionary drivers of female-biased sex ratios: Two-sex models of perennial seagrasses,, American Naturalist, 175 (2010), 302.  doi: 10.1086/650374.  Google Scholar

[24]

A. Skonhoft, N. G. Yoccoz, N. C. Stenseth, J.-M. Gaillard and A. Loison, Management of chamois (rupicapra rupicapra) moving between a protected core area and a hunting area,, Ecological Applications, 12 (2002), 1199.   Google Scholar

[25]

A. Sundelöf and P. Âberg, Birth functions in stage structured two-sex models,, Ecological Modelling, 193 (2006), 787.   Google Scholar

[26]

C. Vanpé, P. Kjellander, M. Galan, J.-F. Cosson, S. Aulagnier, O. Liberg and A. J. M. Hewison, Mating system, sexual dimorphism, and the opportunity for sexual selection in a territorial ungulate,, Behavioral Ecology, 19 (2008), 309.   Google Scholar

[27]

M. J. Wade and S. M. Shuster, Sexual selection: Harem size and the variance in male reproductive success,, The American Naturalist, 164 (2004).  doi: 10.1086/424531.  Google Scholar

[28]

M. Wade, S. Shuster and J. Demuth, Sexual selection favors female-biased sex ratios: The balance between the opposing forces of sex-ratio selection and sexual selection,, American Naturalist, 162 (2003), 403.  doi: 10.1086/378211.  Google Scholar

[29]

J. F. Wittenberger, Group size and polygamy in social mammals,, The American Naturalist, 115 (1980), 197.  doi: 10.1086/283555.  Google Scholar

show all references

References:
[1]

J. Ballou and K. Ralls, Inbreeding and juvenile mortality in small populations of ungulates: A detailed analysis,, Biological Conservation, 24 (1982), 239.  doi: 10.1016/0006-3207(82)90014-3.  Google Scholar

[2]

B. J. Brennan, S. M. Flaxman and S. H. Alonzo, Female alternative reproductive behaviors: The effect of female group size on mate assessment and copying,, Journal of Theoretical Biology, 253 (2008), 561.  doi: 10.1016/j.jtbi.2008.04.003.  Google Scholar

[3]

H. Caswell, Matrix Population Models: Construction, Analysis, and Interpretation,, Sinauer Associates, (2001).   Google Scholar

[4]

H. Caswell and D. E. Weeks, Two-sex models: Chaos, extinction, and other dynamic consequences of sex,, The American Naturalist, 128 (1986), 707.  doi: 10.1086/284598.  Google Scholar

[5]

T. Coulson, E. J. Milner Gulland and T. Clutton Brock, The relative roles of density and climatic variation on population dynamics and fecundity rates in three contrasting ungulate species,, Proceedings of the Royal Society of London B: Biological Sciences, 267 (2000), 1771.  doi: 10.1098/rspb.2000.1209.  Google Scholar

[6]

W. Franklin, Contrasting socioecologies of south america?s wild camelids: the vicu na and the guanaco,, Special Publication of the American Society for Mammalogy, 7 (1983), 573.   Google Scholar

[7]

M. Franz, O. Schülke and J. Ostner, Rapid evolution of cooperation in group-living animals,, BMC Evolutionary Biology, 13 (2013), 0.  doi: 10.1186/1471-2148-13-235.  Google Scholar

[8]

C. Haridas, E. A. Eager, R. Rebarber and B. Tenhumberg, Frequency-dependent population dynamics: Effect of sex ratio and mating system on the elasticity of population growth rate,, Theoretical Population Biology, 97 (2014), 49.  doi: 10.1016/j.tpb.2014.08.003.  Google Scholar

[9]

A. Horev, R. Yosef, P. Tryjanowski and O. Ovadia, Consequences of variation in male harem size to population persistence: Modeling poaching and extinction risk of bengal tigers (panthera tigris),, Biological Conservation, 147 (2012), 22.  doi: 10.1016/j.biocon.2012.01.012.  Google Scholar

[10]

R. Jefferson, Size and Spacing of the Sedentary Guanaco Family Groups,, Master's thesis, (1980).   Google Scholar

[11]

A. Jensen, Sex and age structured matrix model applied to harvesting a white tailed deer population,, Ecological Modelling, 128 (2000), 245.  doi: 10.1016/S0304-3800(00)00198-8.  Google Scholar

[12]

R. Lancia, K. Pollock, J. Bishir and M. Conner, A white-tailed deer harvesting strategy,, Journal of Wildlife Management, 52 (1988), 589.  doi: 10.2307/3800912.  Google Scholar

[13]

R. Langvatn and A. Loison, Consequences of harvesting on age structure, sex ratio and population dynamics of red deer Cervus elaphus in central norway,, Wildlife Biology, 5 (1999), 213.   Google Scholar

[14]

K. G. Magnusson and T. Kasuya, Mating strategies in whale populations: Searching strategy vs. harem strategy,, Ecological Modelling, 102 (1997), 225.  doi: 10.1016/S0304-3800(97)00058-6.  Google Scholar

[15]

L. Marescot, O. Gimenez, C. Duchamp, E. Marboutin and G. Chapron, Reducing matrix population models with application to social animal species,, Ecological Modelling, 232 (2012), 91.  doi: 10.1016/j.ecolmodel.2012.02.017.  Google Scholar

[16]

A. Marino and R. Baldi, Ecological correlates of group-size variation in a resource-defense ungulate, the sedentary guanaco,, PLoS ONE, 9 (2014).  doi: 10.1371/journal.pone.0089060.  Google Scholar

[17]

E. Milner-Gulland, A dynamic game model for the decision to join an aggregation,, Ecological Modelling, 145 (2001), 85.   Google Scholar

[18]

A. Moller, Sexual selection and extinction: why sex matters and why asexual models are insufficient,, Annales Zoologici Fennici, 40 (2003), 221.   Google Scholar

[19]

S. Puig and F. Videla, Comportamiento y organizacion social del guanaco,, in Tecnicas para el Manejo de Guanacos (ed. Santiago), (1995), 97.   Google Scholar

[20]

J. Pérez-González and J. Carranza, Female aggregation interacts with population structure to influence the degree of polygyny in red deer,, Animal Behaviour, 82 (2011), 957.   Google Scholar

[21]

J. Rabinovich and M. Zubillaga, Informe Final del proyecto: "Modelo de manejo de poblaciones de guanacos para la Provincia del Chubut", 2012,, URL , ().   Google Scholar

[22]

D. J. Rankin and H. Kokko, Do males matter? the role of males in population dynamics,, Oikos, 116 (2007), 335.  doi: 10.1111/j.0030-1299.2007.15451.x.  Google Scholar

[23]

A. O. Shelton, The ecological and evolutionary drivers of female-biased sex ratios: Two-sex models of perennial seagrasses,, American Naturalist, 175 (2010), 302.  doi: 10.1086/650374.  Google Scholar

[24]

A. Skonhoft, N. G. Yoccoz, N. C. Stenseth, J.-M. Gaillard and A. Loison, Management of chamois (rupicapra rupicapra) moving between a protected core area and a hunting area,, Ecological Applications, 12 (2002), 1199.   Google Scholar

[25]

A. Sundelöf and P. Âberg, Birth functions in stage structured two-sex models,, Ecological Modelling, 193 (2006), 787.   Google Scholar

[26]

C. Vanpé, P. Kjellander, M. Galan, J.-F. Cosson, S. Aulagnier, O. Liberg and A. J. M. Hewison, Mating system, sexual dimorphism, and the opportunity for sexual selection in a territorial ungulate,, Behavioral Ecology, 19 (2008), 309.   Google Scholar

[27]

M. J. Wade and S. M. Shuster, Sexual selection: Harem size and the variance in male reproductive success,, The American Naturalist, 164 (2004).  doi: 10.1086/424531.  Google Scholar

[28]

M. Wade, S. Shuster and J. Demuth, Sexual selection favors female-biased sex ratios: The balance between the opposing forces of sex-ratio selection and sexual selection,, American Naturalist, 162 (2003), 403.  doi: 10.1086/378211.  Google Scholar

[29]

J. F. Wittenberger, Group size and polygamy in social mammals,, The American Naturalist, 115 (1980), 197.  doi: 10.1086/283555.  Google Scholar

[1]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[2]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[5]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[6]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[9]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[10]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[11]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[15]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[16]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[17]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[18]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (0)

[Back to Top]