2016, 13(6): 1143-1158. doi: 10.3934/mbe.2016035

Mathematical model of the atrioventricular nodal double response tachycardia and double-fire pathology

1. 

Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland

2. 

Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw

Received  October 2015 Revised  May 2016 Published  August 2016

A proposed model consisting of two coupled models (Hodgkin-Huxley and Yanagihara-Noma-Irisawa model) is considered as a description of the heart's action potential. System of ordinary differential equations is used to recreate pathological behaviour in the conducting heart's system such as double fire and the most common tachycardia: atrioventricular nodal reentrant tachycardia (AVNRT). Part of the population has an abnormal accessory pathways: fast and slow (Fujiki, 2008). These pathways in the atrioventricular node (AV node) are anatomical and functional contributions of supraventricular tachycardia. However, the appearance of two pathways in the AV node may be a contribution of arrhythmia, which is caused by coexistent conduction by two pathways (called double fire). The difference in the conduction time between these pathways is the most important factor. This is the reason to introduce three types of couplings and delay to our system in order to reproduce various types of the AVNRT. In our research, introducing the feedback loops and couplings entails the creation of waves which can correspond to the re-entry waves occurring in the AVNRT. Our main aim is to study solutions of the given equations and take into consideration the influence of feedback and delays which occur in these pathological modes. We also present stability analysis for both components, that is Hodgkin-Huxley and Yanagihara-Noma-Irisawa models, as well as for the final double-fire model.
Citation: Beata Jackowska-Zduniak, Urszula Foryś. Mathematical model of the atrioventricular nodal double response tachycardia and double-fire pathology. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1143-1158. doi: 10.3934/mbe.2016035
References:
[1]

D. A. Aabby, Comparatitative Study of Numerical Methods for the Hodgkin-Huxley model of Nerve Cell Action Potentials,, U.o. Dayton, (2009).   Google Scholar

[2]

M. A. Akbarzadeh, A. F. Fazelifar and N. B. Bafruee, A case of dual atrioventricular nodal nonreentrant tachycardia: An unusual cause of tachycardia-induced cardiomyopathy,, Journal of Arrhythmia, 31 (2015), 328.  doi: 10.1016/j.joa.2015.04.008.  Google Scholar

[3]

A. Borisyuk and J. Rinzel, Understanding neuronal dynamics by geometrical dissection of minimal models,, Models and Methods in Neurophysics, 80 (2005), 17.  doi: 10.1016/S0924-8099(05)80008-3.  Google Scholar

[4]

B. Dąbrowska and P. Gajewski, Postępowanie u chorych z nadkomorowymi zaburzeniami rytmu Wytyczne American College of Cardiology, American Heart Association European Society of Cardiology,, Medycyna Praktyczna, 6 (2004).   Google Scholar

[5]

S. Doi, J. Inoue, Z. Pan and K. Tsumoto, Computational Electrophysiology,, Springer, (2010).  doi: 10.1007/978-4-431-53862-2.  Google Scholar

[6]

R. Evertz, F. Merschon, A. Berruezo and L. Mont, Dual ventricular response: Another road to supraventricular tachycardia in dual atrioventricular nodal physiology,, Rev Esp Cardiol., 66 (2013), 145.  doi: 10.1016/j.rec.2012.05.016.  Google Scholar

[7]

U. Foryś, Biological delay systems and the Mikhailov Criterion of stability,, J. Biological Systems, 12 (2004), 45.   Google Scholar

[8]

R. A. Freedman and J. W. Mason, Sustained ventricular tachycardia, clinical aspects,, Cardiac pacing and electrophysiology, (1991).   Google Scholar

[9]

A. Fujiki et al., Junctional rhythm associated with ventriculoatrial block during slow pathway ablation in atypical atrioventricular nodal re-entrant tachycardia,, Europace, 10 (2008), 928.   Google Scholar

[10]

A. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve,, The Journal of Physiology, 117 (1952).   Google Scholar

[11]

M. Jastrzębski and P. Kukla, Tachycardia caused by a double fire- simultaneous double atrioventricular nodal conduction: a rare or underdiagnosed arrhythmia. Spectrum of electrocardiographic pictures in three patients,, Kardiologia Polska, 67 (2009), 77.   Google Scholar

[12]

A. Karnik, K. Hematpour, A. Bhatt and M. Mazzini, Dual AV nodal nonreentrant tachycardia resulting in inappropriate icd therapy in a patient with cardiac sarcoidosis,, Indian Pacing Electrophysiol. J., 14 (2014), 44.  doi: 10.1016/S0972-6292(16)30715-X.  Google Scholar

[13]

D. G. Katritsis and M. E. Josephson, Classification of electrophysiological types of atrioventricular nodal re-entrant tachycardia: A reappraisal,, Europace, 15 (2013), 1231.  doi: 10.1093/europace/eut100.  Google Scholar

[14]

J. Keener and J. Sneyd, Mathematical Physiology. Systems Physiology,, $2^{nd}$ edition, (2009).  doi: 10.1007/978-0-387-75847-3.  Google Scholar

[15]

S. Konturek, Fizjologia człowieka. Układ krążenia,, Wydawnictwo Uniwersytetu Jagielońskiego, (2001).   Google Scholar

[16]

K. Małaczyńska and K. Błaszczyk, Atrioventricular nodal reentrant tachycardia,, Polski Przegląd Kardiologiczny, 14 (2012), 196.   Google Scholar

[17]

S. Masoli, S. Solinas and E. D'Angelo, Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization,, Front. Cell. Neurosci., 9 (2015), 1.  doi: 10.3389/fncel.2015.00047.  Google Scholar

[18]

P. Podziemski and J. J. .Zebrowski, A simple model of the right atrium of the human heart with the sinoatrial and atrioventricular nodes included,, J Clin Monit Comput., 27 (2013), 481.  doi: 10.1007/s10877-013-9429-6.  Google Scholar

[19]

W. G. Stevenson, Exploring postinforction reentrant ventrivular tachycardia with entertainment mapping,, J. Am. Coll. Cardiol., 29 (1997).   Google Scholar

[20]

J. Wang, L. Chen and X. Fei, Analysis and control of the bifurcation Hodgkin-Huxley model,, Chaos, 31 (2007), 247.  doi: 10.1016/j.chaos.2005.09.060.  Google Scholar

[21]

D. Wu, P. Denes, R. Dhingra and R. Pietras, New manifestation of dual AV nodal pathways,, Eur J Cardiol., 2 (1975), 459.   Google Scholar

[22]

K. Yanagihara, A. Noma and H. Irisawa, Reconstruction of sino-atrial node pacemaker potential based on the voltage clamp experiments,, Japanese Journal of Physiology, 30 (1980), 841.  doi: 10.2170/jjphysiol.30.841.  Google Scholar

[23]

B. Zduniak, M. Bodnar and U. Foryś, A modified van der Pol equation with delay in a description of the heart action,, Int. J. Appl. Math. Comput. Sci., 24 (2014), 853.  doi: 10.2478/amcs-2014-0063.  Google Scholar

[24]

Y. Zhang, K. Wang, Y. Yuan, D. Sui and H. Zhang, Effects of Maximal Sodium and Potassium Conductance on the Stability of Hodgkin-Huxley model,, Computational and Mathematical Methods in Medicine, (2014).  doi: 10.1155/2014/761907.  Google Scholar

show all references

References:
[1]

D. A. Aabby, Comparatitative Study of Numerical Methods for the Hodgkin-Huxley model of Nerve Cell Action Potentials,, U.o. Dayton, (2009).   Google Scholar

[2]

M. A. Akbarzadeh, A. F. Fazelifar and N. B. Bafruee, A case of dual atrioventricular nodal nonreentrant tachycardia: An unusual cause of tachycardia-induced cardiomyopathy,, Journal of Arrhythmia, 31 (2015), 328.  doi: 10.1016/j.joa.2015.04.008.  Google Scholar

[3]

A. Borisyuk and J. Rinzel, Understanding neuronal dynamics by geometrical dissection of minimal models,, Models and Methods in Neurophysics, 80 (2005), 17.  doi: 10.1016/S0924-8099(05)80008-3.  Google Scholar

[4]

B. Dąbrowska and P. Gajewski, Postępowanie u chorych z nadkomorowymi zaburzeniami rytmu Wytyczne American College of Cardiology, American Heart Association European Society of Cardiology,, Medycyna Praktyczna, 6 (2004).   Google Scholar

[5]

S. Doi, J. Inoue, Z. Pan and K. Tsumoto, Computational Electrophysiology,, Springer, (2010).  doi: 10.1007/978-4-431-53862-2.  Google Scholar

[6]

R. Evertz, F. Merschon, A. Berruezo and L. Mont, Dual ventricular response: Another road to supraventricular tachycardia in dual atrioventricular nodal physiology,, Rev Esp Cardiol., 66 (2013), 145.  doi: 10.1016/j.rec.2012.05.016.  Google Scholar

[7]

U. Foryś, Biological delay systems and the Mikhailov Criterion of stability,, J. Biological Systems, 12 (2004), 45.   Google Scholar

[8]

R. A. Freedman and J. W. Mason, Sustained ventricular tachycardia, clinical aspects,, Cardiac pacing and electrophysiology, (1991).   Google Scholar

[9]

A. Fujiki et al., Junctional rhythm associated with ventriculoatrial block during slow pathway ablation in atypical atrioventricular nodal re-entrant tachycardia,, Europace, 10 (2008), 928.   Google Scholar

[10]

A. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve,, The Journal of Physiology, 117 (1952).   Google Scholar

[11]

M. Jastrzębski and P. Kukla, Tachycardia caused by a double fire- simultaneous double atrioventricular nodal conduction: a rare or underdiagnosed arrhythmia. Spectrum of electrocardiographic pictures in three patients,, Kardiologia Polska, 67 (2009), 77.   Google Scholar

[12]

A. Karnik, K. Hematpour, A. Bhatt and M. Mazzini, Dual AV nodal nonreentrant tachycardia resulting in inappropriate icd therapy in a patient with cardiac sarcoidosis,, Indian Pacing Electrophysiol. J., 14 (2014), 44.  doi: 10.1016/S0972-6292(16)30715-X.  Google Scholar

[13]

D. G. Katritsis and M. E. Josephson, Classification of electrophysiological types of atrioventricular nodal re-entrant tachycardia: A reappraisal,, Europace, 15 (2013), 1231.  doi: 10.1093/europace/eut100.  Google Scholar

[14]

J. Keener and J. Sneyd, Mathematical Physiology. Systems Physiology,, $2^{nd}$ edition, (2009).  doi: 10.1007/978-0-387-75847-3.  Google Scholar

[15]

S. Konturek, Fizjologia człowieka. Układ krążenia,, Wydawnictwo Uniwersytetu Jagielońskiego, (2001).   Google Scholar

[16]

K. Małaczyńska and K. Błaszczyk, Atrioventricular nodal reentrant tachycardia,, Polski Przegląd Kardiologiczny, 14 (2012), 196.   Google Scholar

[17]

S. Masoli, S. Solinas and E. D'Angelo, Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization,, Front. Cell. Neurosci., 9 (2015), 1.  doi: 10.3389/fncel.2015.00047.  Google Scholar

[18]

P. Podziemski and J. J. .Zebrowski, A simple model of the right atrium of the human heart with the sinoatrial and atrioventricular nodes included,, J Clin Monit Comput., 27 (2013), 481.  doi: 10.1007/s10877-013-9429-6.  Google Scholar

[19]

W. G. Stevenson, Exploring postinforction reentrant ventrivular tachycardia with entertainment mapping,, J. Am. Coll. Cardiol., 29 (1997).   Google Scholar

[20]

J. Wang, L. Chen and X. Fei, Analysis and control of the bifurcation Hodgkin-Huxley model,, Chaos, 31 (2007), 247.  doi: 10.1016/j.chaos.2005.09.060.  Google Scholar

[21]

D. Wu, P. Denes, R. Dhingra and R. Pietras, New manifestation of dual AV nodal pathways,, Eur J Cardiol., 2 (1975), 459.   Google Scholar

[22]

K. Yanagihara, A. Noma and H. Irisawa, Reconstruction of sino-atrial node pacemaker potential based on the voltage clamp experiments,, Japanese Journal of Physiology, 30 (1980), 841.  doi: 10.2170/jjphysiol.30.841.  Google Scholar

[23]

B. Zduniak, M. Bodnar and U. Foryś, A modified van der Pol equation with delay in a description of the heart action,, Int. J. Appl. Math. Comput. Sci., 24 (2014), 853.  doi: 10.2478/amcs-2014-0063.  Google Scholar

[24]

Y. Zhang, K. Wang, Y. Yuan, D. Sui and H. Zhang, Effects of Maximal Sodium and Potassium Conductance on the Stability of Hodgkin-Huxley model,, Computational and Mathematical Methods in Medicine, (2014).  doi: 10.1155/2014/761907.  Google Scholar

[1]

Qingyun Wang, Xia Shi, Guanrong Chen. Delay-induced synchronization transition in small-world Hodgkin-Huxley neuronal networks with channel blocking. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 607-621. doi: 10.3934/dcdsb.2011.16.607

[2]

Aymen Balti, Valentina Lanza, Moulay Aziz-Alaoui. A multi-base harmonic balance method applied to Hodgkin-Huxley model. Mathematical Biosciences & Engineering, 2018, 15 (3) : 807-825. doi: 10.3934/mbe.2018036

[3]

Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations & Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043

[4]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[5]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[6]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[7]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[8]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[9]

Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268

[10]

Songbai Guo, Wanbiao Ma. Global behavior of delay differential equations model of HIV infection with apoptosis. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 103-119. doi: 10.3934/dcdsb.2016.21.103

[11]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020042

[12]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[13]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

[14]

Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040

[15]

Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control & Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517

[16]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[17]

Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91

[18]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[19]

Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control & Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036

[20]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]