2016, 13(6): 1169-1183. doi: 10.3934/mbe.2016037

A model of thermotherapy treatment for bladder cancer

1. 

School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland, Ireland

Received  December 2015 Revised  March 2016 Published  August 2016

In this work, we investigate chemo- thermotherapy, a recently clinically-approved post-surgery treatment of non muscle invasive urothelial bladder carcinoma. We developed a mathematical model and numerically simulated the physical processes related to this treatment. The model is based on the conductive Maxwell's equations used to simulate the therapy administration and Convection-Diffusion equation for incompressible fluid to study heat propagation through the bladder tissue. The model parameters correspond to the data provided by the thermotherapy device manufacturer. We base our computational domain on a CT image of a human bladder. Our numerical simulations can be applied to further research on the effects of chemo- thermotherapy on bladder and surrounding tissues and for treatment personalization in order to maximize the effect of the therapy while avoiding burning of the bladder.
Citation: Christoph Sadée, Eugene Kashdan. A model of thermotherapy treatment for bladder cancer. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1169-1183. doi: 10.3934/mbe.2016037
References:
[1]

, Radiating device for hyperthermia,, US Patent RE37, ().

[2]

, Water and Microwaves,, , ().

[3]

, Radiofrequency induced thermo-chemotherapy effect for the treatment of non-muscle invasive bladder cancer,, , ().

[4]

, Tissue parameters virtual family,, , ().

[5]

, Dielectric Properties of Body Tissues,, , ().

[6]

J. L.-S. Au, et al., Methods to improve efficacy of intravesical mitomycin c: Results of a randomized phase III trial,, J. of the National Cancer Institute, 93 (2001), 597.

[7]

M. Babjuk, et al., EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder,, European J. of Urology, 54 (2008), 303. doi: 10.1016/j.eururo.2008.04.051.

[8]

T. Cebeci, Convective Heat Transfer,, Springer, (2002).

[9]

R. Colombo, et al., Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-C alone as adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC),, British J. of Urolology Int., 107 (2011), 912.

[10]

O. N. Gofrit, et al., Combined local bladder hyperthermia and intravesical chemotherapy for the treatment of high-grade superficial bladder cancer,, Urology, 63 (2004), 466. doi: 10.1016/j.urology.2003.10.036.

[11]

M. C. Hall, et al., Guideline for the management of non muscle invasive bladder cancer (stages Ta, T1, and Tis): 2007 update,, J. of Urology, 178 (2007), 2314.

[12]

A. G. Van der Heijden, et al., Preliminary European results of local microwave hyperthermia and chemotherapy treatment in intermediate or high risk superficial transitional cell carcinoma of the bladder,, European J. of Urology, 46 (2004), 65.

[13]

J. M. Hill and M. J. Jennings, Formulation of model equations for heating by microwave radiation,, Applied Mathematical Modelling, 17 (1993), 369. doi: 10.1016/0307-904X(93)90061-K.

[14]

J. Holman, Heat Transfer,, McGraw-Hill, (2009).

[15]

A. Jemal, et al., Global cancer statistics,, CA:A Cancer J. for Clinicians, 61 (2011), 69. doi: 10.3322/caac.20107.

[16]

V. Kumar, A. K. Abbas and N. Fausto, Robbins and Cotran pathological basis of disease,, Elsevier, (2005).

[17]

R. J. M. Lammers, et al., The role of a combined regimen with intravesical chemotherapy and hyperthermia in the management of non-muscle-invasive bladder cancer: a systematic review,, European Urology, 60 (2011), 81.

[18]

B. Moskovitz, et al., 10-year single-center experience of combined intravesical chemohyperthermia for nonmuscle invasive bladder cancer,, Future Oncology, 8 (2012), 1041.

[19]

D. Shier, J. Butler and R. Lewis, Hole's Human Anatomy and Physiology,, McGraw-Hill, (2012).

[20]

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design,, Wiley, (2012).

[21]

A. Taflove and C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method,, (Artech House, (2005).

[22]

M. G. Wientjes, et al., Penetration of mitomycin c in human bladder,, Cancer Research, 53 (1993), 3314.

[23]

P. J. Woodroffe, et al., Modelling cell signalling and differentiation in the urothelium,, Bull of Math Biology, 67 (2005), 369. doi: 10.1016/j.bulm.2004.08.006.

show all references

References:
[1]

, Radiating device for hyperthermia,, US Patent RE37, ().

[2]

, Water and Microwaves,, , ().

[3]

, Radiofrequency induced thermo-chemotherapy effect for the treatment of non-muscle invasive bladder cancer,, , ().

[4]

, Tissue parameters virtual family,, , ().

[5]

, Dielectric Properties of Body Tissues,, , ().

[6]

J. L.-S. Au, et al., Methods to improve efficacy of intravesical mitomycin c: Results of a randomized phase III trial,, J. of the National Cancer Institute, 93 (2001), 597.

[7]

M. Babjuk, et al., EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder,, European J. of Urology, 54 (2008), 303. doi: 10.1016/j.eururo.2008.04.051.

[8]

T. Cebeci, Convective Heat Transfer,, Springer, (2002).

[9]

R. Colombo, et al., Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-C alone as adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC),, British J. of Urolology Int., 107 (2011), 912.

[10]

O. N. Gofrit, et al., Combined local bladder hyperthermia and intravesical chemotherapy for the treatment of high-grade superficial bladder cancer,, Urology, 63 (2004), 466. doi: 10.1016/j.urology.2003.10.036.

[11]

M. C. Hall, et al., Guideline for the management of non muscle invasive bladder cancer (stages Ta, T1, and Tis): 2007 update,, J. of Urology, 178 (2007), 2314.

[12]

A. G. Van der Heijden, et al., Preliminary European results of local microwave hyperthermia and chemotherapy treatment in intermediate or high risk superficial transitional cell carcinoma of the bladder,, European J. of Urology, 46 (2004), 65.

[13]

J. M. Hill and M. J. Jennings, Formulation of model equations for heating by microwave radiation,, Applied Mathematical Modelling, 17 (1993), 369. doi: 10.1016/0307-904X(93)90061-K.

[14]

J. Holman, Heat Transfer,, McGraw-Hill, (2009).

[15]

A. Jemal, et al., Global cancer statistics,, CA:A Cancer J. for Clinicians, 61 (2011), 69. doi: 10.3322/caac.20107.

[16]

V. Kumar, A. K. Abbas and N. Fausto, Robbins and Cotran pathological basis of disease,, Elsevier, (2005).

[17]

R. J. M. Lammers, et al., The role of a combined regimen with intravesical chemotherapy and hyperthermia in the management of non-muscle-invasive bladder cancer: a systematic review,, European Urology, 60 (2011), 81.

[18]

B. Moskovitz, et al., 10-year single-center experience of combined intravesical chemohyperthermia for nonmuscle invasive bladder cancer,, Future Oncology, 8 (2012), 1041.

[19]

D. Shier, J. Butler and R. Lewis, Hole's Human Anatomy and Physiology,, McGraw-Hill, (2012).

[20]

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design,, Wiley, (2012).

[21]

A. Taflove and C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method,, (Artech House, (2005).

[22]

M. G. Wientjes, et al., Penetration of mitomycin c in human bladder,, Cancer Research, 53 (1993), 3314.

[23]

P. J. Woodroffe, et al., Modelling cell signalling and differentiation in the urothelium,, Bull of Math Biology, 67 (2005), 369. doi: 10.1016/j.bulm.2004.08.006.

[1]

Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Multi-scale model of bladder cancer development. Conference Publications, 2011, 2011 (Special) : 803-812. doi: 10.3934/proc.2011.2011.803

[2]

Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Hybrid discrete-continuous model of invasive bladder cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 729-742. doi: 10.3934/mbe.2013.10.729

[3]

K. E. Starkov, Svetlana Bunimovich-Mendrazitsky. Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1059-1075. doi: 10.3934/mbe.2016030

[4]

Svetlana Bunimovich-Mendrazitsky, Yakov Goltser. Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of bcg treatment of bladder cancer. Mathematical Biosciences & Engineering, 2011, 8 (2) : 529-547. doi: 10.3934/mbe.2011.8.529

[5]

Tiffany A. Jones, Lou Caccetta, Volker Rehbock. Optimisation modelling of cancer growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 115-123. doi: 10.3934/dcdsb.2017006

[6]

Avner Friedman. A hierarchy of cancer models and their mathematical challenges. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 147-159. doi: 10.3934/dcdsb.2004.4.147

[7]

Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129

[8]

John D. Nagy, Dieter Armbruster. Evolution of uncontrolled proliferation and the angiogenic switch in cancer. Mathematical Biosciences & Engineering, 2012, 9 (4) : 843-876. doi: 10.3934/mbe.2012.9.843

[9]

Amina Eladdadi, Noura Yousfi, Abdessamad Tridane. Preface: Special issue on cancer modeling, analysis and control. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : i-iii. doi: 10.3934/dcdsb.2013.18.4i

[10]

Mingxing Zhou, Jing Liu, Shuai Wang, Shan He. A comparative study of robustness measures for cancer signaling networks. Big Data & Information Analytics, 2017, 2 (1) : 87-96. doi: 10.3934/bdia.2017011

[11]

Urszula Ledzewicz, Heinz Schättler. Controlling a model for bone marrow dynamics in cancer chemotherapy. Mathematical Biosciences & Engineering, 2004, 1 (1) : 95-110. doi: 10.3934/mbe.2004.1.95

[12]

Britnee Crawford, Christopher M. Kribs-Zaleta. The impact of vaccination and coinfection on HPV and cervical cancer. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 279-304. doi: 10.3934/dcdsb.2009.12.279

[13]

Cristian Tomasetti, Doron Levy. An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences & Engineering, 2010, 7 (4) : 905-918. doi: 10.3934/mbe.2010.7.905

[14]

Yangjin Kim, Avner Friedman, Eugene Kashdan, Urszula Ledzewicz, Chae-Ok Yun. Application of ecological and mathematical theory to cancer: New challenges. Mathematical Biosciences & Engineering, 2015, 12 (6) : i-iv. doi: 10.3934/mbe.2015.12.6i

[15]

Natalia L. Komarova. Spatial stochastic models of cancer: Fitness, migration, invasion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 761-775. doi: 10.3934/mbe.2013.10.761

[16]

M.A.J Chaplain, G. Lolas. Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks & Heterogeneous Media, 2006, 1 (3) : 399-439. doi: 10.3934/nhm.2006.1.399

[17]

Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591

[18]

Urszula Ledzewicz, Heinz Schättler, Shuo Wang. On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks & Heterogeneous Media, 2019, 14 (1) : 131-147. doi: 10.3934/nhm.2019007

[19]

Jan Kelkel, Christina Surulescu. On some models for cancer cell migration through tissue networks. Mathematical Biosciences & Engineering, 2011, 8 (2) : 575-589. doi: 10.3934/mbe.2011.8.575

[20]

Benedetto Piccoli. Optimal syntheses for state constrained problems with application to optimization of cancer therapies. Mathematical Control & Related Fields, 2012, 2 (4) : 383-398. doi: 10.3934/mcrf.2012.2.383

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]