Citation: |
[1] |
B. Baguley, Multiple drug resistance mechanisms in cancer, Mol. Biotechnol., 46 (2010), 308-316.doi: 10.1007/s12033-010-9321-2. |
[2] |
S. Benzekry and P. Hahnfeldt, Maximum tolerated dose versus metronomic scheduling in the treatment of metastatic cancers, Journal of Theoretical Biology, 335 (2013), 235-244.doi: 10.1016/j.jtbi.2013.06.036. |
[3] |
I. Bozic, J. Reiter, B. Allen, T. Antal, K. Chatterjee, P. Shah, Y. S. Moon, A. Yaqubie, N. Kelly, D. Le, E. Lipson, P. Chapman, L. Diaz, B. Vogelstein and M. Nowak, Evolutionary dynamics of cancer in response to targeted combination therapy, eLife, 2 (2013), e00747.doi: 10.7554/eLife.00747. |
[4] |
T. Brocato, P. Dogra, E. J. Koay, A. Day, Y.-L. Chuang, Z. Wang and V. Cristini, Understanding drug resistance in breast cancer with mathematical oncology, Curr. Breast Cancer Rep., 6 (2014), 110-120.doi: 10.1007/s12609-014-0143-2. |
[5] |
L. Buffoni, D. Dongiovanni, C. Barone, C. Fissore, D. Ottaviani, V. Dongiovanni, R. Grillo, A. Salvadori, N. Birocco, M. Schena and O. Bertetto, Fractionated dose of cisplatin (CDDP) and vinorelbine (VNB) chemotherapy for elderly patients with advanced non-small cell lung cancer: Phase II trial, Lung Cancer, 54 (2006), 353-357.doi: 10.1016/j.lungcan.2006.08.013. |
[6] |
J. Casciari, S. Sotirchos and R. Sutherland, Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration and extracellular pH, J. Cellular Physiol., 151 (1992), 386-394.doi: 10.1002/jcp.1041510220. |
[7] |
A. Coldman and J. Goldie, A stochastic model for the origin and treatment of tumors containing drug-resistant cells, Bull. Math. Biol., 48 (1986), 279-292.doi: 10.1007/BF02459682. |
[8] |
J. Cunningham, J. Brown, T. L. Vincent3 and R. A. Gatenby, Divergent and convergent evolution in metastases suggest treatment strategies based on specific metastatic sites, Evolution, Medicine, and Public Health, 2015 (2015), 76-87.doi: 10.1093/emph/eov006. |
[9] |
J. Cunningham, R. Gatenby and J. Brown, Evolutionary dynamics in cancer therapy, Mol. Pharm., 8 (2011), 2094-2100.doi: 10.1021/mp2002279. |
[10] |
R. De Souza, P. Zahedi, R. Badame, C. Allen and M. Piquette-Miller, Chemotherapy dosing schedule influences drug resistance development in ovarian cancer, Mol. Cancer Ther., 10 (2011), 1289-1299.doi: 10.1158/1535-7163.MCT-11-0058. |
[11] |
U. Emmenegger, G. Francia, A. Chow, Y. Shaked, A. Kouri, S. Man and R. Kerbel, Tumor that acquire resistance to low-dose metronomic cyclophosphamide retain sensitivity to maximum tolerated dose cyclophosphamide, Neoplasia, 13 (2011), 40-48.doi: 10.1593/neo.101174. |
[12] |
J. Foo, K. Leder and S. Mumenthaler, Cancer as a moving target: Understanding the composition and rebound growth kinetics of recurrent tumors, Evol. Appl., 6 (2013), 54-69.doi: 10.1111/eva.12019. |
[13] |
J. Foo and F. Michor, Evolution of resistance to targeted anti-cancer therapies during continuous and pulsed administration strategies, PLoS Comput. Biol., 5 (2009), e1000557, 17pp.doi: 10.1371/journal.pcbi.1000557. |
[14] |
J. Foo and F. Michor, Evolution of resistance to anti-cancer therapy during general dosing schedules, J. Theor. Biol., 263 (2010), 179-188.doi: 10.1016/j.jtbi.2009.11.022. |
[15] |
J. Foo and F. Michor, Evolution of acquired resistance to anti-cancer therapy, J. Theor. Biol., 355 (2014), 10-20.doi: 10.1016/j.jtbi.2014.02.025. |
[16] |
J. Freyer and R. Sutherland, A reduction in the in situ rates of oxygen and glucose consumption of cells in EMT6/Ro spheroids during growth, J. Cellular Physiol., 124 (1985), 516-524.doi: 10.1002/jcp.1041240323. |
[17] |
F. Fu, M. Nowak and S. Bonhoeffer, Spatial heterogeneity in drug concentrations can facilitate the emergence of resistance to cancer therapy, PLoS Comput. Biol., 11 (2015), e1004142.doi: 10.1371/journal.pcbi.1004142. |
[18] |
R. Gatenby, A. Silva, R. Gillies and B. Frieden, Adaptive therapy, Cancer Res., 69 (2009), 4894-4903.doi: 10.1158/0008-5472.CAN-08-3658. |
[19] |
J. Gevertz, Z. Aminzare, K.-A. Norton, J. Perez-Velazquez, A. Volkening and K. Rejniak, Emergence of anti-cancer drug resistance: Exploring the importance of the microenvironmental niche via a spatial model, in Applications of Dynamical Systems in Biology and Medicine (eds. T. Jackson and A. Radunskaya), vol. 158 of The IMA Volumes in Mathematics and its Applications, Springer-Verlag, 2015, 1-34.doi: 10.1007/978-1-4939-2782-1_1. |
[20] |
J. Greene, O. Lavi, M. Gottesman and D. Levy, The impact of cell density and mutations in a model of multidrug resistance in solid tumors, Bull. Math. Biol., 76 (2014), 627-653.doi: 10.1007/s11538-014-9936-8. |
[21] |
M. Hadjiandreou and G. Mitsis, Mathematical modeling of tumor growth, drug- resistance, toxicity, and optimal therapy design, IEEE Trans. Biomed. Eng., 61 (2013), 415-425. |
[22] |
D. Hanahan, G. Bergers and E. Bergsland, Less is more, regularly: Metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice, The Journal of Clinical Investigations, 105 (2000), 1045-1047.doi: 10.1172/JCI9872. |
[23] |
T. Jackson and H. Byrne, A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy, Math. Biosci., 164 (2000), 17-38.doi: 10.1016/S0025-5564(99)00062-0. |
[24] |
J. Kim and I. Tannock, Repopulation of cancer cells during therapy: An important cause of treatment failure, Nat. Rev. Cancer, 5 (2005), 516-525.doi: 10.1038/nrc1650. |
[25] |
N. Komarova and D. Wodarz, Drug resistance in cancer: Principles of emergence and prevention, Proc. Natl. Acad. Sci., 102 (2005), 9714-9719.doi: 10.1073/pnas.0501870102. |
[26] |
N. Komarova and D. Wodarz, Stochastic modeling of cellular colonies with quiescence: An application to drug resistance in cancer, Theor. Popul. Biol., 72 (2007), 523-538.doi: 10.1016/j.tpb.2007.08.003. |
[27] |
O. Lavi, M. Gottesman and D. Levy, The dynamics of drug resistance: A mathematical perspective, Drug Resist. Update, 15 (2012), 90-97.doi: 10.1016/j.drup.2012.01.003. |
[28] |
O. Lavi, J. Greene, D. Levy and M. Gottesman, The role of cell density and intratumoral heterogeneity in multidrug resistance, Cancer Res., 73 (2013), 7168-7175.doi: 10.1158/0008-5472.CAN-13-1768. |
[29] |
U. Ledzewicz, B. Amni and H. Schattler, Dynamics and control of a mathematical model for metronomic chemotherapy, Mathematical Biosciences and Engineering, 12 (2015), 1257-1275.doi: 10.3934/mbe.2015.12.1257. |
[30] |
U. Ledzewicz and H. Schattler, Drug resistance in cancer chemotherapy as an optimal control problem, Discret. Contin. Dyn-B, 6 (2006), 129-150. |
[31] |
U. Ledzewicz, H. Schattler, M. Gahrooi and S. Dehkordi, On the MTD paradigm and optimal control for multi-drug cancer chemotherapy, Math. Biosci. Eng., 10 (2013), 803-819.doi: 10.3934/mbe.2013.10.803. |
[32] |
A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil and B. Perthame, Modeling effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, Bull. Math. Biol., 77 (2015), 1-22.doi: 10.1007/s11538-014-0046-4. |
[33] |
A. Lorz, T. Lorenzi, M. Hochberg, J. Clairambault and B. Perthame, Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM: Math. Model. Num. Anal., 47 (2013), 377-399.doi: 10.1051/m2an/2012031. |
[34] |
V. Malik P.S.and Raina and N. Andre, Metronomics as maintenance treatment in oncology: Time for chemo-switch, Front. Oncol., 4 (2014), article 76. |
[35] |
F. Meineke, C. Potten and M. Loeffler, Cell migration and organization in the intestinal crypt using a lattice-free model, Cell Prolif., 34 (2001), 253-266.doi: 10.1046/j.0960-7722.2001.00216.x. |
[36] |
S. Menchon, The effect of intrinsic and acquired resistances on chemotherapy effectiveness, Acta Biother., 63 (2015), 113-127.doi: 10.1007/s10441-015-9248-x. |
[37] |
K. Mross and S. Steinbild, Metronomic anti-cancer therapy - an ongoing treatment option for advanced cancer patients, Journal of Cancer Therapeutics & Research, 1 (2012), 1-32.doi: 10.7243/2049-7962-1-32. |
[38] |
S. Mumenthaler, J. Foo, K. Leder, N. Choi, D. Agus, W. Pao, P. Mallick and F. Michor, Evolutionary modeling of combination treatment strategies to overcome resistance to tyrosine kinase inhibitors in non-small cell lung cancer, Mol. Pharm., 8 (2011), 2069-2079.doi: 10.1021/mp200270v. |
[39] |
O. G. Scharovsky, L. Mainetti and V. Rozados, Metronomic chemotherapy: Changing the paradigm that more is better, Current Oncology, 16 (2012), 7-15. |
[40] |
P. Orlando, R. Gatenby and J. Brown, Cancer treatment as a game: Integrating evolutionary game theory into the optimal control of chemotherapy, Phys. Biol., 9 (2012), 065007. |
[41] |
K. Pietras and D. Hanahan, A multitargeted, metronomic, and maximum-tolerated dose "chemo-switch" regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer, J. Clinical Oncology, 23 (2005), 939-952.doi: 10.1200/JCO.2005.07.093. |
[42] |
A. Pisco and S. Huang, Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: 'What does not kill me strengthens me', Br. J. Cancer, 112 (2015), 1725-1732.doi: 10.1038/bjc.2015.146. |
[43] |
G. Powathil, M. Chaplain and M. Swat, Investigating the development of chemotherapeutic drug resistance in cancer: A multiscale computational study, arXiv:1407.0865. |
[44] |
S. Saxena and G. Christofori, Rebuilding cancer metastasis in the mouse, Molecular Oncology, 7 (2013), 283-296.doi: 10.1016/j.molonc.2013.02.009. |
[45] |
A. Silva and R. Gatenby, A theoretical quantitative model for evolution of cancer chemotherapy resistance, Biol. Direct., 5 (2010), p25.doi: 10.1186/1745-6150-5-25. |
[46] |
O. Trédan, C. Galmarini, K. Patel and I. Tannock, Drug resistance and the solid tumor microenvironment, J. Natl. Cancer Inst., 99 (2007), 1441-1454. |
[47] |
R. Turner and S. J. Charlton, Assessing the minimum number of data points required for accurate IC50 determination, Assay Drug Dev Technol., 3 (2005), 525-531. |
[48] |
M. Vives, M. Ginesta, K. Gracova, M. Graupera, O. Casanovas, G. Capella, T. Serrano, B. Laquente and F. Vinals, Motronomic chemotherapy following the maximum tolerated dose is an effective anti-tumour therapy affecting angiogenesis, tumour dissemination and cancer stem cells, International Journal of Cancer, 133 (2013), 2464-2472. |
[49] |
B. Waclaw, I. Bozic, M. Pittman, R. Hruban, B. Vogelstein and M. Nowak, A spatial model predicts that dispersal and cell turnover limit intratumor heterogeneity, Nature, 525 (2015), 261-264. |
[50] |
A. Wu, K. Loutherback, G. Lambert, L. Estévez-Salmeron, T. Tlsty, R. Austin and J. Sturma, Cell motility and drug gradients in the emergence of resistance to chemotherapy, Proc. Natl. Acad. Sci., 110 (2013), 16103-16108.doi: 10.1073/pnas.1314385110. |
[51] |
H. Zahreddine and K. Borden, Mechanisms and insights into drug resistance in cancer, Front. Pharmacol., 4 (2013), e28.doi: 10.3389/fphar.2013.00028. |