February  2017, 14(1): 17-30. doi: 10.3934/mbe.2017002

A singular limit for an age structured mutation problem

1. 

Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa

2. 

Institute of Mathematics, Technical University of Łódź, Łódź, Poland

Received  October 31, 2015 Accepted  March 10, 2016 Published  October 2016

Fund Project: The paper was presented at the conference Micro and Macro Systems in Life Sciences, B¸edlewo, 8-13 June 2015 and was supported by the statutory grant of the Institute of Mathematics of Łódź University of Technology. Participation of A. F. was sponsored by the organizers of the conference.

The spread of a particular trait in a cell population often is modelled by an appropriate system of ordinary differential equations describing how the sizes of subpopulations of the cells with the same genome change in time. On the other hand, it is recognized that cells have their own vital dynamics and mutations, leading to changes in their genome, mostly occurring during the cell division at the end of its life cycle. In this context, the process is described by a system of McKendrick type equations which resembles a network transport problem. In this paper we show that, under an appropriate scaling of the latter, these two descriptions are asymptotically equivalent.

Citation: Jacek Banasiak, Aleksandra Falkiewicz. A singular limit for an age structured mutation problem. Mathematical Biosciences & Engineering, 2017, 14 (1) : 17-30. doi: 10.3934/mbe.2017002
References:
[1]

H. Amann and J. Escher, Analysis II Birkhäuser, Basel 2008. Google Scholar

[2]

W. Arendt, Resolvent positive operators, Proc. Lond. Math. Soc., 54 (1987), 321-349. doi: 10.1112/plms/s3-54.2.321. Google Scholar

[3] J. Banasiak and L. Arlotti, Positive Perturbations of Semigroups with Applications, Springer Verlag, London, 2006. Google Scholar
[4]

J. Banasiak and A. Falkiewicz, Some transport and diffusion processes on networks and their graph realizability Appl. Math. Lett. ,45 (2015), 25-30 doi: 10.1016/j.aml.2015.01.006. Google Scholar

[5]

J. Banasiak, A. Falkiewicz and P. Namayanja, Semigroup approach to diffusion and transport problems on networks Semigroup Forum. [DOI 10.1007/s00233-015-9730-4] doi: 10.1007/s00233-015-9730-4. Google Scholar

[6]

J. BanasiakA. Falkiewicz and P. Namayanja, Asymptotic state lumping in transport and diffusion problems on networks with applications to population problems, Math. Models Methods Appl. Sci., 26 (2016), 215-247. doi: 10.1142/S0218202516400017. Google Scholar

[7]

J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology Birkhäuser/Springer, Cham, 2014. doi: 10.1007/978-3-319-05140-6. Google Scholar

[8]

J. Banasiak and M. Moszyński, Dynamics of birth-and-death processes with proliferation -stability and chaos, Discrete Contin. Dyn. Syst., 29 (2011), 67-79. doi: 10.3934/dcds.2011.29.67. Google Scholar

[9] A. Bobrowski, Functional Analysis for Probability and Stochastic Processes, Cambridge University Press, Cambridge, 2005. doi: 10.1017/CBO9780511614583. Google Scholar
[10] A. Bobrowski, Convergence of One-parameter Operator Semigroups. In Models of Mathematical Biology and Elsewhere, Cambridge University Press, Cambridge, 2016. Google Scholar
[11]

A. Bobrowski, On Hille-type approximation of degenerate semigroups of operators, Linear Algebra and its Applications, 511 (2016), 31-53. Google Scholar

[12]

A. Bobrowski and M. Kimmel, Asymptotic behaviour of an operator exponential related to branching random walk models of DNA repeats, J. Biol. Systems, 7 (1999), 33-43. doi: 10.1142/S0218339099000048. Google Scholar

[13]

B. Dorn, Semigroups for flows in infinite networks, Semigroup Forum, 76 (2008), 341-356. doi: 10.1007/s00233-007-9036-2. Google Scholar

[14] K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer Verlag, New York, 1999. Google Scholar
[15]

M. Kimmel and D. N. Stivers, Time-continuous branching walk models of unstable gene amplification, Bull. Math. Biol., 50 (1994), 337-357. Google Scholar

[16]

M. KimmelA. Świerniak and A. Polański, Infinite-dimensional model of evolution of drug resistance of cancer cells, J. Math. Systems Estimation Control, 8 (1998), 1-16. Google Scholar

[17]

M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162. doi: 10.1007/s00209-004-0695-3. Google Scholar

[18]

J. L. Lebowitz and S. I. Rubinov, A theory for the age and generation time distribution of a microbial population, J. Theor. Biol., 1 (1974), 17-36. doi: 10.1007/BF02339486. Google Scholar

[19]

C. D. Meyer, Matrix Analysis and Applied Linear Algebra SIAM, Philadelphia, 2000. doi: 10.1137/1.9780898719512. Google Scholar

[20]

P. Namayanja, Transport on Network Structures Ph. D thesis, UKZN, 2012.Google Scholar

[21]

M. Rotenberg, Transport theory for growing cell population, J. Theor. Biol., 103 (1983), 181-199. doi: 10.1016/0022-5193(83)90024-3. Google Scholar

[22]

A. Świerniak, A. Polański and M. Kimmel, Control problems arising in chemotherapy under evolving drug resistance, Preprints of the 13th World Congress of IFAC 1996, Volume B, 411-416.Google Scholar

[23]

H. T. K. Tse, W. McConnell Weaver and D. Di Carlo, Increased asymmetric and multi-daughter cell division in mechanically confined microenvironments PLoS ONE, 7 (2012), e38986. doi: 10.1371/journal.pone.0038986. Google Scholar

show all references

References:
[1]

H. Amann and J. Escher, Analysis II Birkhäuser, Basel 2008. Google Scholar

[2]

W. Arendt, Resolvent positive operators, Proc. Lond. Math. Soc., 54 (1987), 321-349. doi: 10.1112/plms/s3-54.2.321. Google Scholar

[3] J. Banasiak and L. Arlotti, Positive Perturbations of Semigroups with Applications, Springer Verlag, London, 2006. Google Scholar
[4]

J. Banasiak and A. Falkiewicz, Some transport and diffusion processes on networks and their graph realizability Appl. Math. Lett. ,45 (2015), 25-30 doi: 10.1016/j.aml.2015.01.006. Google Scholar

[5]

J. Banasiak, A. Falkiewicz and P. Namayanja, Semigroup approach to diffusion and transport problems on networks Semigroup Forum. [DOI 10.1007/s00233-015-9730-4] doi: 10.1007/s00233-015-9730-4. Google Scholar

[6]

J. BanasiakA. Falkiewicz and P. Namayanja, Asymptotic state lumping in transport and diffusion problems on networks with applications to population problems, Math. Models Methods Appl. Sci., 26 (2016), 215-247. doi: 10.1142/S0218202516400017. Google Scholar

[7]

J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology Birkhäuser/Springer, Cham, 2014. doi: 10.1007/978-3-319-05140-6. Google Scholar

[8]

J. Banasiak and M. Moszyński, Dynamics of birth-and-death processes with proliferation -stability and chaos, Discrete Contin. Dyn. Syst., 29 (2011), 67-79. doi: 10.3934/dcds.2011.29.67. Google Scholar

[9] A. Bobrowski, Functional Analysis for Probability and Stochastic Processes, Cambridge University Press, Cambridge, 2005. doi: 10.1017/CBO9780511614583. Google Scholar
[10] A. Bobrowski, Convergence of One-parameter Operator Semigroups. In Models of Mathematical Biology and Elsewhere, Cambridge University Press, Cambridge, 2016. Google Scholar
[11]

A. Bobrowski, On Hille-type approximation of degenerate semigroups of operators, Linear Algebra and its Applications, 511 (2016), 31-53. Google Scholar

[12]

A. Bobrowski and M. Kimmel, Asymptotic behaviour of an operator exponential related to branching random walk models of DNA repeats, J. Biol. Systems, 7 (1999), 33-43. doi: 10.1142/S0218339099000048. Google Scholar

[13]

B. Dorn, Semigroups for flows in infinite networks, Semigroup Forum, 76 (2008), 341-356. doi: 10.1007/s00233-007-9036-2. Google Scholar

[14] K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer Verlag, New York, 1999. Google Scholar
[15]

M. Kimmel and D. N. Stivers, Time-continuous branching walk models of unstable gene amplification, Bull. Math. Biol., 50 (1994), 337-357. Google Scholar

[16]

M. KimmelA. Świerniak and A. Polański, Infinite-dimensional model of evolution of drug resistance of cancer cells, J. Math. Systems Estimation Control, 8 (1998), 1-16. Google Scholar

[17]

M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162. doi: 10.1007/s00209-004-0695-3. Google Scholar

[18]

J. L. Lebowitz and S. I. Rubinov, A theory for the age and generation time distribution of a microbial population, J. Theor. Biol., 1 (1974), 17-36. doi: 10.1007/BF02339486. Google Scholar

[19]

C. D. Meyer, Matrix Analysis and Applied Linear Algebra SIAM, Philadelphia, 2000. doi: 10.1137/1.9780898719512. Google Scholar

[20]

P. Namayanja, Transport on Network Structures Ph. D thesis, UKZN, 2012.Google Scholar

[21]

M. Rotenberg, Transport theory for growing cell population, J. Theor. Biol., 103 (1983), 181-199. doi: 10.1016/0022-5193(83)90024-3. Google Scholar

[22]

A. Świerniak, A. Polański and M. Kimmel, Control problems arising in chemotherapy under evolving drug resistance, Preprints of the 13th World Congress of IFAC 1996, Volume B, 411-416.Google Scholar

[23]

H. T. K. Tse, W. McConnell Weaver and D. Di Carlo, Increased asymmetric and multi-daughter cell division in mechanically confined microenvironments PLoS ONE, 7 (2012), e38986. doi: 10.1371/journal.pone.0038986. Google Scholar

[1]

Jacek Banasiak, Eddy Kimba Phongi, MirosŁaw Lachowicz. A singularly perturbed SIS model with age structure. Mathematical Biosciences & Engineering, 2013, 10 (3) : 499-521. doi: 10.3934/mbe.2013.10.499

[2]

Adam Gregosiewicz. Asymptotics of the Lebowitz-Rubinow-Rotenberg model of population development. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2443-2472. doi: 10.3934/dcdsb.2018260

[3]

Jacek Banasiak, Rodrigue Yves M'pika Massoukou. A singularly perturbed age structured SIRS model with fast recovery. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2383-2399. doi: 10.3934/dcdsb.2014.19.2383

[4]

Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095

[5]

Jacek Banasiak, Amartya Goswami. Singularly perturbed population models with reducible migration matrix 1. Sova-Kurtz theorem and the convergence to the aggregated model. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 617-635. doi: 10.3934/dcds.2015.35.617

[6]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[7]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

[8]

Nara Bobko, Jorge P. Zubelli. A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 1-21. doi: 10.3934/mbe.2015.12.1

[9]

Bedr'Eddine Ainseba. Age-dependent population dynamics diffusive systems. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1233-1247. doi: 10.3934/dcdsb.2004.4.1233

[10]

Leonid Shaikhet. Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassy-winged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1167-1174. doi: 10.3934/mbe.2014.11.1167

[11]

Fred Brauer. A model for an SI disease in an age - structured population. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 257-264. doi: 10.3934/dcdsb.2002.2.257

[12]

Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1

[13]

Cui-Ping Cheng, Wan-Tong Li, Zhi-Cheng Wang. Asymptotic stability of traveling wavefronts in a delayed population model with stage structure on a two-dimensional spatial lattice. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 559-575. doi: 10.3934/dcdsb.2010.13.559

[14]

Flaviano Battelli, Ken Palmer. Heteroclinic connections in singularly perturbed systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 431-461. doi: 10.3934/dcdsb.2008.9.431

[15]

Wei Feng, Xin Lu, Richard John Donovan Jr.. Population dynamics in a model for territory acquisition. Conference Publications, 2001, 2001 (Special) : 156-165. doi: 10.3934/proc.2001.2001.156

[16]

Fred Brauer, Zhisheng Shuai, P. van den Driessche. Dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1335-1349. doi: 10.3934/mbe.2013.10.1335

[17]

Jinliang Wang, Ran Zhang, Toshikazu Kuniya. A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2016, 13 (1) : 227-247. doi: 10.3934/mbe.2016.13.227

[18]

Mohammed Nor Frioui, Tarik Mohammed Touaoula, Bedreddine Ainseba. Global dynamics of an age-structured model with relapse. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019226

[19]

Suxia Zhang, Xiaxia Xu. A mathematical model for hepatitis B with infection-age structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1329-1346. doi: 10.3934/dcdsb.2016.21.1329

[20]

Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba. A multi-group SIR epidemic model with age structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3515-3550. doi: 10.3934/dcdsb.2016109

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (10)
  • HTML views (4)
  • Cited by (0)

Other articles
by authors

[Back to Top]