[1]
|
G. Ajmone Marsan, N. Bellomo and A. Tosin, Complex Systems and Society: Modeling and Simulation, Springer, 2013.
doi: 10.1007/978-1-4614-7242-1.
|
[2]
|
L. Arlotti, E. De Angelis, L. Fermo, M. Lachowicz and N. Bellomo, On a class of integro-differential equations modeling complex systems with nonlinear interactions, Appl.Math. Lett., 25 (2012), 490-495.
doi: 10.1016/j.aml.2011.09.043.
|
[3]
|
N. Bellomo and A. Bellouquid, Global solution to the Cauchy problem for discrete velocity models of vehicular traffic, J. Differ. Equations, 252 (2012), 1350-1368.
doi: 10.1016/j.jde.2011.09.005.
|
[4]
|
N. Bellomo, V. Coscia and M. Delitala, On the mathematical theory of vehicular traffic fow Ⅰ -Fluid dynamic and kinetic modeling, Math. Mod. Meth. Appl. Sci., 12 (2002), 1801-1843.
doi: 10.1142/S0218202502002343.
|
[5]
|
N. Bellomo and C. Dogbé, On the modelling of traffic and crowds -a survey of models, speculations and perspectives, SIAM Rev., 53 (2011), 409-463.
doi: 10.1137/090746677.
|
[6]
|
N. Bellomo, D. Knopoff and J. Soler, On the difficult interplay between life, "complexity", and mathematical sciences, Math. Mod. Meth. Appl. Sci., 23 (2013), 1861-1913.
doi: 10.1142/S021820251350053X.
|
[7]
|
N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint Math. Mod. Meth. Appl. Sci. 22 (2012), 1230004, 29pp.
doi: 10.1142/S0218202512300049.
|
[8]
|
A. Bellouquid, E. De Angelis and L. Fermo, Towards the modeling of vehicular traffic as a complex system: A kinetic theory approach Math. Mod. Meth. Appl. Sci. 22(2012), 1140003, 35pp.
doi: 10.1142/S0218202511400033.
|
[9]
|
A. Bellouquid and M. Delitala, Mathematical Modeling of Complex Biological Systems. A Kinetic Theory Approach, Birkhäuser, Boston, 2006.
|
[10]
|
A. Benfenati and V. Coscia, Nonlinear microscale interactions in the kinetic theory of active particles, Appl. Math. Lett., 26 (2013), 979-983.
doi: 10.1016/j.aml.2013.04.007.
|
[11]
|
V. Coscia, M. Delitala and P. Frasca, On the mathematical theory of vehicular traffic flow Ⅱ: Discrete velocity kinetic models, Int. J. Non-Linear Mech., 42 (2007), 411-421.
doi: 10.1016/j.ijnonlinmec.2006.02.008.
|
[12]
|
V. Coscia, L. Fermo and N. Bellomo, On the mathematical theory of living systems Ⅱ: The interplay between mathematics and system biology, Comput. Math. Appl., 62 (2011), 3902-3911.
doi: 10.1016/j.camwa.2011.09.043.
|
[13]
|
M. Delitala and A. Tosin, Mathematical modeling of vehicular traffic: A discrete kinetic theory approach, Math. Mod. Meth. Appl. Sci., 17 (2007), 901-932.
doi: 10.1142/S0218202507002157.
|
[14]
|
L. Arlotti, N. Bellomo, E. De Angelis and M. Lachowicz,
Generalized Kinetic Models in Applied Sciences World Scientific, New Jersey, 2003.
doi: 10.1142/5359.
|
[15]
|
J. Banasiak and M. Lachowicz Methods of Small Parameter in Mathematical Biology Birkhauser, 2014.
doi: 10.1007/978-3-319-05140-6.
|
[16]
|
S. Kaniel and M. Shinbrot, The Boltzmann equation. Ⅰ. Uniqueness and local existence, Math. Phys., 58 (1978), 65-84.
|
[17]
|
B. S. Kerner,
The Physics of Traffic, Empirical Freeway Pattern Features Engineering Applications and Theory, Springer, 2004.
|
[18]
|
P. Lax,
Hyperbolic Partial Differential Equations Courant Lecture Notes, 2006.
doi: 10.1090/cln/014.
|