\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the initial value problem for a class of discrete velocity models

Abstract Full Text(HTML) Figure(2) / Table(1) Related Papers Cited by
  • In this paper we investigate the initial value problem for a class of hyperbolic systems relating the mathematical modeling of a class of complex phenomena, with emphasis on vehicular traffic flow. Existence and uniqueness for large times of solutions, a basic requisite both for models building and for their numerical implementation, are obtained under weak hypotheses on the terms modeling the interaction among agents. The results are then compared with the existing literature on the subject.

    Mathematics Subject Classification: Primary: 35L03, 35Q91; Secondary: 90B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Initial data corresponding to $\rho_c=5$. The class $\overline{f}_1$ of velocity $v_1=0$ is on the right in red color, the class $\overline{f}_2$ of velocity $v_2=1$ is represented by the bimodal distribution on the left in blue color

    Figure 2.  Final distribution functions corresponding to $\Delta=0.5, 0.4,0.35,0.25$, and initial data as in Figure 1

    Table 1.  Maximum $\rho_{t^*}$ of the density reached at time $t^*$ as function of the size $\Delta$ of the interaction domain $D_x$. Observe that in any case $\rho_{t^*}$ is greater that $\rho_c$

    $\Delta$ $t^*$ $\rho_{t^*}$
    1.05 4.5425 5.1890
    1.00 4.5885 5.2214
    0.95 4.6365 5.2660
    0.90 4.6855 5.3269
    0.85 4.7365 5.4092
    0.80 4.7925 5.5192
    0.75 4.8555 5.6652
    0.70 4.9255 5.8575
    0.65 5.0025 6.1090
    0.60 5.4595 6.4658
    0.55 5.4985 6.9726
    0.50 5.5406 7.5731
    0.45 5.5786 8.3056
    0.40 5.6106 9.2196
    0.35 5.6346 10.3606
    0.30 5.6536 11.7122
    0.25 5.6706 13.0508
    0.20 5.6846 13.7962
    0.15 5.6926 13.3582
     | Show Table
    DownLoad: CSV
  • [1] G. Ajmone MarsanN. Bellomo and  A. TosinComplex Systems and Society: Modeling and Simulation, Springer, 2013.  doi: 10.1007/978-1-4614-7242-1.
    [2] L. ArlottiE. De AngelisL. FermoM. Lachowicz and N. Bellomo, On a class of integro-differential equations modeling complex systems with nonlinear interactions, Appl.Math. Lett., 25 (2012), 490-495.  doi: 10.1016/j.aml.2011.09.043.
    [3] N. Bellomo and A. Bellouquid, Global solution to the Cauchy problem for discrete velocity models of vehicular traffic, J. Differ. Equations, 252 (2012), 1350-1368.  doi: 10.1016/j.jde.2011.09.005.
    [4] N. BellomoV. Coscia and M. Delitala, On the mathematical theory of vehicular traffic fow Ⅰ -Fluid dynamic and kinetic modeling, Math. Mod. Meth. Appl. Sci., 12 (2002), 1801-1843.  doi: 10.1142/S0218202502002343.
    [5] N. Bellomo and C. Dogbé, On the modelling of traffic and crowds -a survey of models, speculations and perspectives, SIAM Rev., 53 (2011), 409-463.  doi: 10.1137/090746677.
    [6] N. BellomoD. Knopoff and J. Soler, On the difficult interplay between life, "complexity", and mathematical sciences, Math. Mod. Meth. Appl. Sci., 23 (2013), 1861-1913.  doi: 10.1142/S021820251350053X.
    [7] N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint Math. Mod. Meth. Appl. Sci. 22 (2012), 1230004, 29pp. doi: 10.1142/S0218202512300049.
    [8] A. Bellouquid, E. De Angelis and L. Fermo, Towards the modeling of vehicular traffic as a complex system: A kinetic theory approach Math. Mod. Meth. Appl. Sci. 22(2012), 1140003, 35pp. doi: 10.1142/S0218202511400033.
    [9] A. Bellouquid and  M. DelitalaMathematical Modeling of Complex Biological Systems. A Kinetic Theory Approach, Birkhäuser, Boston, 2006. 
    [10] A. Benfenati and V. Coscia, Nonlinear microscale interactions in the kinetic theory of active particles, Appl. Math. Lett., 26 (2013), 979-983.  doi: 10.1016/j.aml.2013.04.007.
    [11] V. CosciaM. Delitala and P. Frasca, On the mathematical theory of vehicular traffic flow Ⅱ: Discrete velocity kinetic models, Int. J. Non-Linear Mech., 42 (2007), 411-421.  doi: 10.1016/j.ijnonlinmec.2006.02.008.
    [12] V. CosciaL. Fermo and N. Bellomo, On the mathematical theory of living systems Ⅱ: The interplay between mathematics and system biology, Comput. Math. Appl., 62 (2011), 3902-3911.  doi: 10.1016/j.camwa.2011.09.043.
    [13] M. Delitala and A. Tosin, Mathematical modeling of vehicular traffic: A discrete kinetic theory approach, Math. Mod. Meth. Appl. Sci., 17 (2007), 901-932.  doi: 10.1142/S0218202507002157.
    [14] L. Arlotti, N. Bellomo, E. De Angelis and M. Lachowicz, Generalized Kinetic Models in Applied Sciences World Scientific, New Jersey, 2003. doi: 10.1142/5359.
    [15] J. Banasiak and M. Lachowicz Methods of Small Parameter in Mathematical Biology Birkhauser, 2014. doi: 10.1007/978-3-319-05140-6.
    [16] S. Kaniel and M. Shinbrot, The Boltzmann equation. Ⅰ. Uniqueness and local existence, Math. Phys., 58 (1978), 65-84. 
    [17] B. S. Kerner, The Physics of Traffic, Empirical Freeway Pattern Features Engineering Applications and Theory, Springer, 2004.
    [18] P. Lax, Hyperbolic Partial Differential Equations Courant Lecture Notes, 2006. doi: 10.1090/cln/014.
  • 加载中

Figures(2)

Tables(1)

SHARE

Article Metrics

HTML views(294) PDF downloads(164) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return