February  2017, 14(1): 31-43. doi: 10.3934/mbe.2017003

On the initial value problem for a class of discrete velocity models

University of Ferrara, Department of Mathematics and Computer Science, Via Machiavelli 35,44121 Ferrara, Italy

Received  October 22, 2015 Accepted  January 12, 2016 Published  October 2016

In this paper we investigate the initial value problem for a class of hyperbolic systems relating the mathematical modeling of a class of complex phenomena, with emphasis on vehicular traffic flow. Existence and uniqueness for large times of solutions, a basic requisite both for models building and for their numerical implementation, are obtained under weak hypotheses on the terms modeling the interaction among agents. The results are then compared with the existing literature on the subject.

Citation: Davide Bellandi. On the initial value problem for a class of discrete velocity models. Mathematical Biosciences & Engineering, 2017, 14 (1) : 31-43. doi: 10.3934/mbe.2017003
References:
[1] G. Ajmone MarsanN. Bellomo and A. Tosin, Complex Systems and Society: Modeling and Simulation, Springer, 2013.  doi: 10.1007/978-1-4614-7242-1.  Google Scholar
[2]

L. ArlottiE. De AngelisL. FermoM. Lachowicz and N. Bellomo, On a class of integro-differential equations modeling complex systems with nonlinear interactions, Appl.Math. Lett., 25 (2012), 490-495.  doi: 10.1016/j.aml.2011.09.043.  Google Scholar

[3]

N. Bellomo and A. Bellouquid, Global solution to the Cauchy problem for discrete velocity models of vehicular traffic, J. Differ. Equations, 252 (2012), 1350-1368.  doi: 10.1016/j.jde.2011.09.005.  Google Scholar

[4]

N. BellomoV. Coscia and M. Delitala, On the mathematical theory of vehicular traffic fow Ⅰ -Fluid dynamic and kinetic modeling, Math. Mod. Meth. Appl. Sci., 12 (2002), 1801-1843.  doi: 10.1142/S0218202502002343.  Google Scholar

[5]

N. Bellomo and C. Dogbé, On the modelling of traffic and crowds -a survey of models, speculations and perspectives, SIAM Rev., 53 (2011), 409-463.  doi: 10.1137/090746677.  Google Scholar

[6]

N. BellomoD. Knopoff and J. Soler, On the difficult interplay between life, "complexity", and mathematical sciences, Math. Mod. Meth. Appl. Sci., 23 (2013), 1861-1913.  doi: 10.1142/S021820251350053X.  Google Scholar

[7]

N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint Math. Mod. Meth. Appl. Sci. 22 (2012), 1230004, 29pp. doi: 10.1142/S0218202512300049.  Google Scholar

[8]

A. Bellouquid, E. De Angelis and L. Fermo, Towards the modeling of vehicular traffic as a complex system: A kinetic theory approach Math. Mod. Meth. Appl. Sci. 22(2012), 1140003, 35pp. doi: 10.1142/S0218202511400033.  Google Scholar

[9] A. Bellouquid and M. Delitala, Mathematical Modeling of Complex Biological Systems. A Kinetic Theory Approach, Birkhäuser, Boston, 2006.   Google Scholar
[10]

A. Benfenati and V. Coscia, Nonlinear microscale interactions in the kinetic theory of active particles, Appl. Math. Lett., 26 (2013), 979-983.  doi: 10.1016/j.aml.2013.04.007.  Google Scholar

[11]

V. CosciaM. Delitala and P. Frasca, On the mathematical theory of vehicular traffic flow Ⅱ: Discrete velocity kinetic models, Int. J. Non-Linear Mech., 42 (2007), 411-421.  doi: 10.1016/j.ijnonlinmec.2006.02.008.  Google Scholar

[12]

V. CosciaL. Fermo and N. Bellomo, On the mathematical theory of living systems Ⅱ: The interplay between mathematics and system biology, Comput. Math. Appl., 62 (2011), 3902-3911.  doi: 10.1016/j.camwa.2011.09.043.  Google Scholar

[13]

M. Delitala and A. Tosin, Mathematical modeling of vehicular traffic: A discrete kinetic theory approach, Math. Mod. Meth. Appl. Sci., 17 (2007), 901-932.  doi: 10.1142/S0218202507002157.  Google Scholar

[14]

L. Arlotti, N. Bellomo, E. De Angelis and M. Lachowicz, Generalized Kinetic Models in Applied Sciences World Scientific, New Jersey, 2003. doi: 10.1142/5359.  Google Scholar

[15]

J. Banasiak and M. Lachowicz Methods of Small Parameter in Mathematical Biology Birkhauser, 2014. doi: 10.1007/978-3-319-05140-6.  Google Scholar

[16]

S. Kaniel and M. Shinbrot, The Boltzmann equation. Ⅰ. Uniqueness and local existence, Math. Phys., 58 (1978), 65-84.   Google Scholar

[17]

B. S. Kerner, The Physics of Traffic, Empirical Freeway Pattern Features Engineering Applications and Theory, Springer, 2004. Google Scholar

[18]

P. Lax, Hyperbolic Partial Differential Equations Courant Lecture Notes, 2006. doi: 10.1090/cln/014.  Google Scholar

show all references

References:
[1] G. Ajmone MarsanN. Bellomo and A. Tosin, Complex Systems and Society: Modeling and Simulation, Springer, 2013.  doi: 10.1007/978-1-4614-7242-1.  Google Scholar
[2]

L. ArlottiE. De AngelisL. FermoM. Lachowicz and N. Bellomo, On a class of integro-differential equations modeling complex systems with nonlinear interactions, Appl.Math. Lett., 25 (2012), 490-495.  doi: 10.1016/j.aml.2011.09.043.  Google Scholar

[3]

N. Bellomo and A. Bellouquid, Global solution to the Cauchy problem for discrete velocity models of vehicular traffic, J. Differ. Equations, 252 (2012), 1350-1368.  doi: 10.1016/j.jde.2011.09.005.  Google Scholar

[4]

N. BellomoV. Coscia and M. Delitala, On the mathematical theory of vehicular traffic fow Ⅰ -Fluid dynamic and kinetic modeling, Math. Mod. Meth. Appl. Sci., 12 (2002), 1801-1843.  doi: 10.1142/S0218202502002343.  Google Scholar

[5]

N. Bellomo and C. Dogbé, On the modelling of traffic and crowds -a survey of models, speculations and perspectives, SIAM Rev., 53 (2011), 409-463.  doi: 10.1137/090746677.  Google Scholar

[6]

N. BellomoD. Knopoff and J. Soler, On the difficult interplay between life, "complexity", and mathematical sciences, Math. Mod. Meth. Appl. Sci., 23 (2013), 1861-1913.  doi: 10.1142/S021820251350053X.  Google Scholar

[7]

N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint Math. Mod. Meth. Appl. Sci. 22 (2012), 1230004, 29pp. doi: 10.1142/S0218202512300049.  Google Scholar

[8]

A. Bellouquid, E. De Angelis and L. Fermo, Towards the modeling of vehicular traffic as a complex system: A kinetic theory approach Math. Mod. Meth. Appl. Sci. 22(2012), 1140003, 35pp. doi: 10.1142/S0218202511400033.  Google Scholar

[9] A. Bellouquid and M. Delitala, Mathematical Modeling of Complex Biological Systems. A Kinetic Theory Approach, Birkhäuser, Boston, 2006.   Google Scholar
[10]

A. Benfenati and V. Coscia, Nonlinear microscale interactions in the kinetic theory of active particles, Appl. Math. Lett., 26 (2013), 979-983.  doi: 10.1016/j.aml.2013.04.007.  Google Scholar

[11]

V. CosciaM. Delitala and P. Frasca, On the mathematical theory of vehicular traffic flow Ⅱ: Discrete velocity kinetic models, Int. J. Non-Linear Mech., 42 (2007), 411-421.  doi: 10.1016/j.ijnonlinmec.2006.02.008.  Google Scholar

[12]

V. CosciaL. Fermo and N. Bellomo, On the mathematical theory of living systems Ⅱ: The interplay between mathematics and system biology, Comput. Math. Appl., 62 (2011), 3902-3911.  doi: 10.1016/j.camwa.2011.09.043.  Google Scholar

[13]

M. Delitala and A. Tosin, Mathematical modeling of vehicular traffic: A discrete kinetic theory approach, Math. Mod. Meth. Appl. Sci., 17 (2007), 901-932.  doi: 10.1142/S0218202507002157.  Google Scholar

[14]

L. Arlotti, N. Bellomo, E. De Angelis and M. Lachowicz, Generalized Kinetic Models in Applied Sciences World Scientific, New Jersey, 2003. doi: 10.1142/5359.  Google Scholar

[15]

J. Banasiak and M. Lachowicz Methods of Small Parameter in Mathematical Biology Birkhauser, 2014. doi: 10.1007/978-3-319-05140-6.  Google Scholar

[16]

S. Kaniel and M. Shinbrot, The Boltzmann equation. Ⅰ. Uniqueness and local existence, Math. Phys., 58 (1978), 65-84.   Google Scholar

[17]

B. S. Kerner, The Physics of Traffic, Empirical Freeway Pattern Features Engineering Applications and Theory, Springer, 2004. Google Scholar

[18]

P. Lax, Hyperbolic Partial Differential Equations Courant Lecture Notes, 2006. doi: 10.1090/cln/014.  Google Scholar

Figure 1.  Initial data corresponding to $\rho_c=5$. The class $\overline{f}_1$ of velocity $v_1=0$ is on the right in red color, the class $\overline{f}_2$ of velocity $v_2=1$ is represented by the bimodal distribution on the left in blue color
Figure 2.  Final distribution functions corresponding to $\Delta=0.5, 0.4,0.35,0.25$, and initial data as in Figure 1
Table 1.  Maximum $\rho_{t^*}$ of the density reached at time $t^*$ as function of the size $\Delta$ of the interaction domain $D_x$. Observe that in any case $\rho_{t^*}$ is greater that $\rho_c$
$\Delta$ $t^*$ $\rho_{t^*}$
1.05 4.5425 5.1890
1.00 4.5885 5.2214
0.95 4.6365 5.2660
0.90 4.6855 5.3269
0.85 4.7365 5.4092
0.80 4.7925 5.5192
0.75 4.8555 5.6652
0.70 4.9255 5.8575
0.65 5.0025 6.1090
0.60 5.4595 6.4658
0.55 5.4985 6.9726
0.50 5.5406 7.5731
0.45 5.5786 8.3056
0.40 5.6106 9.2196
0.35 5.6346 10.3606
0.30 5.6536 11.7122
0.25 5.6706 13.0508
0.20 5.6846 13.7962
0.15 5.6926 13.3582
$\Delta$ $t^*$ $\rho_{t^*}$
1.05 4.5425 5.1890
1.00 4.5885 5.2214
0.95 4.6365 5.2660
0.90 4.6855 5.3269
0.85 4.7365 5.4092
0.80 4.7925 5.5192
0.75 4.8555 5.6652
0.70 4.9255 5.8575
0.65 5.0025 6.1090
0.60 5.4595 6.4658
0.55 5.4985 6.9726
0.50 5.5406 7.5731
0.45 5.5786 8.3056
0.40 5.6106 9.2196
0.35 5.6346 10.3606
0.30 5.6536 11.7122
0.25 5.6706 13.0508
0.20 5.6846 13.7962
0.15 5.6926 13.3582
[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[4]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[5]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[6]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[7]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[8]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[11]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[14]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[15]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[16]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[17]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (44)
  • HTML views (53)
  • Cited by (0)

Other articles
by authors

[Back to Top]