-
Previous Article
On application of optimal control to SEIR normalized models: Pros and cons
- MBE Home
- This Issue
-
Next Article
Emergence of spatial patterns in a mathematical model for the co-culture dynamics of epithelial-like and mesenchymal-like cells
Controlling imported malaria cases in the United States of America
1. | Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245, USA |
2. | Department of Mathematics, Howard University, Washington, DC 20059, USA |
We extend the mathematical malaria epidemic model framework of Dembele et al. and use it to “capture” the 2013 Centers for Disease Control and Prevention (CDC) reported data on the 2011 number of imported malaria cases in the USA. Furthermore, we use our “fitted” malaria models for the top 20 countries of malaria acquisition by USA residents to study the impact of protecting USA residents from malaria infection when they travel to malaria endemic areas, the impact of protecting residents of malaria endemic regions from mosquito bites and the impact of killing mosquitoes in those endemic areas on the CDC number of imported malaria cases in USA. To significantly reduce the number of imported malaria cases in USA, for each top 20 country of malaria acquisition by USA travelers, we compute the optimal proportion of USA international travelers that must be protected against malaria infection and the optimal proportion of mosquitoes that must be killed.
References:
[1] |
P. -L. Alonso, A. Djimde, H. Hughes and S. -A. Ward, A research agenda for malaria eradication: Drugs, DOI: 10.1371/journal.pmed.1000402,January25,2011. |
[2] |
P. Carnevale, J. Mouchet, M. Coosemans, J. Julvez, S. Manguin, R. -D. Lenoble and S. Sircoulou,
Biodiversite du Paludisme dans le Monde Editions John Libbey Eurotext, Paris, 2004. |
[3] |
R. -P. Cody and J. -K. Smith,
Applied Statistics and the SAS Programming Language Pearson Prentice Hall, Fifth Edition, 2006. |
[4] |
K. -A. Cullen and P. -M. Arguin,
Malaria Surveillance-United States, 2011 Centers for Diseases Control and Prevention, (2013), 1-17.
|
[5] |
B. Dembele, A. Friedman and A. -A. Yakubu,
Mathematical Model for optimal use of sulfadoxine-pyrimethamine as a temporary vaccine, Bulletin of Mathematical Biology, 72 (2010), 914-930.
doi: 10.1007/s11538-009-9476-9. |
[6] |
B. Dembele and A. -A. Yakubu,
Optimal treated mosquito bed nets and insecticides for eradication of malaria in Missira, Discrete and Continuous Dynamical Systems Series B, 17 (2012), 1831-1840.
doi: 10.3934/dcdsb.2012.17.1831. |
[7] |
A. -M. Dondorp, F. Nosten, P. Yi, D. Das and A. -P. Phyo,
Artemisinin resistance in Plasmodium falciparum malaria, N Engl J Med, 361 (2009), 455-467.
|
[8] |
J. -C. Koella and R. Antia,
Epidemiological models for the spread of anti-malaria resistance, Malaria Journal, (2003), 2-3.
|
[9] |
W. -O. Kermack and A. G. McKendrick,
Contributions to the mathematical theory of epidemics, Proc. R. Soc A, 115 (1927), 700-721.
|
[10] |
A. J. Lokta,
Contributions to the analysis of malaria epidemiology, Am. J. Hyg., 3 (1923), 11-21.
|
[11] |
G. Macdonald,
The analysis of infection rate in diseases in which superinfection occurs, Trop. Dis., 47 (1950), 907-915.
|
[12] |
C. -A. Mertler and R. -A. Vannatta,
Advanced and Multivariate Statistical Methods: Pratical Application and Interpretation Pyrczak Publishing, Fifth Edition, 2013. |
[13] |
K. O. Okosun, R. Ouifki and N. Marcus,
Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity, Biosystems, 106 (2011), 136-145.
doi: 10.1016/j.biosystems.2011.07.006. |
[14] |
C. Y. -J. Peng,
Data Analysis Using SAS Sage, 2009.
doi: 10.4135/9781452230146. |
[15] |
R. Ross,
The Prevention of Malaria
$ \ 2^{nd}$ edition, With Addendum on the Theory of Happenings, Murray, London, 1911. |
[16] |
C. H. Sibley, J. E. Hyde, P. F. G. Sims, C. V. Plowe, J. G. Kublin, E. K. Mberu, A. F. Cowman, P. A. Winstanley, W. M. Watkins and A. M. Nzila,
Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: What next?, Trends in Parasitology, 17 (2001), 570-571.
|
[17] |
N. Sogoba, S. Doumbia, P. Vounatsou, I. Baber, M. Keita, M. Maiga, S. Toure, G. Dolo, T. Smith and J. M. C. Ribeiro,
Monotoring of larval habitats and mosquito densities in the sudan savanna of Mali: Implications of malaria vector control, Am. J. Trop. Med. Hyg., 77 (2007), 82-88.
|
[18] |
B. -G. Tabachnick and L. -S. Fidell,
Using Multivariate Statistics Pearson, Sixth Edition, 2013. |
[19] |
J. -F. Trape, A. Tall, C. Sokhna, A. -B. Ly, N. Diagne, O. Ndiath, C. Mazenot and V. Richard,
The rise and fall of malaria in a West African rural community, Dielmo, Senegal, from 1990 to 2010: A 22 year longitudinal study, The Lancet Infectious Diseases, 14 (2014), 476-488.
|
[20] |
http://www.cdc.gov/mmwr/preview/mmwrhtml/ss6205a1.htm. Accessed7/2/2016. |
[21] |
World-Health-Organization, Malaria, Available from: http://www.who.int/mediacentre/factsheets/fs094/en/. Accessed 7/2/2016. |
show all references
References:
[1] |
P. -L. Alonso, A. Djimde, H. Hughes and S. -A. Ward, A research agenda for malaria eradication: Drugs, DOI: 10.1371/journal.pmed.1000402,January25,2011. |
[2] |
P. Carnevale, J. Mouchet, M. Coosemans, J. Julvez, S. Manguin, R. -D. Lenoble and S. Sircoulou,
Biodiversite du Paludisme dans le Monde Editions John Libbey Eurotext, Paris, 2004. |
[3] |
R. -P. Cody and J. -K. Smith,
Applied Statistics and the SAS Programming Language Pearson Prentice Hall, Fifth Edition, 2006. |
[4] |
K. -A. Cullen and P. -M. Arguin,
Malaria Surveillance-United States, 2011 Centers for Diseases Control and Prevention, (2013), 1-17.
|
[5] |
B. Dembele, A. Friedman and A. -A. Yakubu,
Mathematical Model for optimal use of sulfadoxine-pyrimethamine as a temporary vaccine, Bulletin of Mathematical Biology, 72 (2010), 914-930.
doi: 10.1007/s11538-009-9476-9. |
[6] |
B. Dembele and A. -A. Yakubu,
Optimal treated mosquito bed nets and insecticides for eradication of malaria in Missira, Discrete and Continuous Dynamical Systems Series B, 17 (2012), 1831-1840.
doi: 10.3934/dcdsb.2012.17.1831. |
[7] |
A. -M. Dondorp, F. Nosten, P. Yi, D. Das and A. -P. Phyo,
Artemisinin resistance in Plasmodium falciparum malaria, N Engl J Med, 361 (2009), 455-467.
|
[8] |
J. -C. Koella and R. Antia,
Epidemiological models for the spread of anti-malaria resistance, Malaria Journal, (2003), 2-3.
|
[9] |
W. -O. Kermack and A. G. McKendrick,
Contributions to the mathematical theory of epidemics, Proc. R. Soc A, 115 (1927), 700-721.
|
[10] |
A. J. Lokta,
Contributions to the analysis of malaria epidemiology, Am. J. Hyg., 3 (1923), 11-21.
|
[11] |
G. Macdonald,
The analysis of infection rate in diseases in which superinfection occurs, Trop. Dis., 47 (1950), 907-915.
|
[12] |
C. -A. Mertler and R. -A. Vannatta,
Advanced and Multivariate Statistical Methods: Pratical Application and Interpretation Pyrczak Publishing, Fifth Edition, 2013. |
[13] |
K. O. Okosun, R. Ouifki and N. Marcus,
Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity, Biosystems, 106 (2011), 136-145.
doi: 10.1016/j.biosystems.2011.07.006. |
[14] |
C. Y. -J. Peng,
Data Analysis Using SAS Sage, 2009.
doi: 10.4135/9781452230146. |
[15] |
R. Ross,
The Prevention of Malaria
$ \ 2^{nd}$ edition, With Addendum on the Theory of Happenings, Murray, London, 1911. |
[16] |
C. H. Sibley, J. E. Hyde, P. F. G. Sims, C. V. Plowe, J. G. Kublin, E. K. Mberu, A. F. Cowman, P. A. Winstanley, W. M. Watkins and A. M. Nzila,
Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: What next?, Trends in Parasitology, 17 (2001), 570-571.
|
[17] |
N. Sogoba, S. Doumbia, P. Vounatsou, I. Baber, M. Keita, M. Maiga, S. Toure, G. Dolo, T. Smith and J. M. C. Ribeiro,
Monotoring of larval habitats and mosquito densities in the sudan savanna of Mali: Implications of malaria vector control, Am. J. Trop. Med. Hyg., 77 (2007), 82-88.
|
[18] |
B. -G. Tabachnick and L. -S. Fidell,
Using Multivariate Statistics Pearson, Sixth Edition, 2013. |
[19] |
J. -F. Trape, A. Tall, C. Sokhna, A. -B. Ly, N. Diagne, O. Ndiath, C. Mazenot and V. Richard,
The rise and fall of malaria in a West African rural community, Dielmo, Senegal, from 1990 to 2010: A 22 year longitudinal study, The Lancet Infectious Diseases, 14 (2014), 476-488.
|
[20] |
http://www.cdc.gov/mmwr/preview/mmwrhtml/ss6205a1.htm. Accessed7/2/2016. |
[21] |
World-Health-Organization, Malaria, Available from: http://www.who.int/mediacentre/factsheets/fs094/en/. Accessed 7/2/2016. |
Parameter | Description |
αhm | Human infectivity rate |
αmh | Mosquito infectivity rate |
bm | Mosquito biting rate |
λh | Human birth rate |
λm | Mosquito birth rate |
βh | Human loss of immunity rate |
αh | Human recovery rate |
μd | Malaria induced death rate |
μh, μm | Human, mosquito death rates |
θm | Mosquito loss of incubation rate |
ch | Proportion of humans using bed net |
cm | Proportion of mosquitoes killed |
cu | Proportion of USA travellers to endemic countries |
Infection rate of humans in endemic countries | |
γu | Infection rate of USA travellers to endemic countries |
Parameter | Description |
αhm | Human infectivity rate |
αmh | Mosquito infectivity rate |
bm | Mosquito biting rate |
λh | Human birth rate |
λm | Mosquito birth rate |
βh | Human loss of immunity rate |
αh | Human recovery rate |
μd | Malaria induced death rate |
μh, μm | Human, mosquito death rates |
θm | Mosquito loss of incubation rate |
ch | Proportion of humans using bed net |
cm | Proportion of mosquitoes killed |
cu | Proportion of USA travellers to endemic countries |
Infection rate of humans in endemic countries | |
γu | Infection rate of USA travellers to endemic countries |
Malaria Acquisition Country | 2011 CDC Data |
Afghanistan | 60 |
Cameroon | 62 |
Cote D'Ivoire | 28 |
Ethiopia | 55 |
Ghana | 156 |
Guinea | 40 |
Guyana | 19 |
Haiti | 72 |
Honduras | 21 |
India | 223 |
Kenya | 37 |
Liberia | 90 |
Nigeria | 213 |
Pakistan | 39 |
Sierra Leone | 116 |
Sudan | 32 |
Uganda | 61 |
Senegal | 17 |
Eritrea | 18 |
Gambia | 21 |
Other | 540 |
Malaria Acquisition Country | 2011 CDC Data |
Afghanistan | 60 |
Cameroon | 62 |
Cote D'Ivoire | 28 |
Ethiopia | 55 |
Ghana | 156 |
Guinea | 40 |
Guyana | 19 |
Haiti | 72 |
Honduras | 21 |
India | 223 |
Kenya | 37 |
Liberia | 90 |
Nigeria | 213 |
Pakistan | 39 |
Sierra Leone | 116 |
Sudan | 32 |
Uganda | 61 |
Senegal | 17 |
Eritrea | 18 |
Gambia | 21 |
Other | 540 |
Country | αmh | αhm | u | λh | βh | αh | μh | μm | θm | μd |
Afghanistan | 0.014 | 0.014 | 0.020845 | 0.000124 | 0.03 | 0.25 | 0.0000219 | 0.033 | 0.1 | 3.1144*10-9 |
Cameroon | 0.096 | 0.096 | 0.0043860 | 0.000094 | 0.03 | 0.25 | 0.0000329 | 0.033 | 0.1 | 6.9372*10-7 |
Cote D'Ivoire | 0.088 | 0.088 | 0.002231 | 0.00009 | 0.03 | 0.25 | 0.0000411 | 0.033 | 0.1 | 2.3603*10-6 |
Ethiopia | 0.037 | 0.037 | 0.010205 | 0.000098 | 0.03 | 0.25 | 0.0000219 | 0.033 | 0.1 | 3.7081*10-8 |
Ghana | 0.080 | 0.080 | 0.013519 | 0.00008 | 0.03 | 0.25 | 0.0000247 | 0.033 | 0.1 | 3.8825*10-7 |
Guinea | 0.081 | 0.081 | 0.00343 | 0.000102 | 0.03 | 0.25 | 0.0000329 | 0.033 | 0.1 | 1.5945*10-7 |
Guyana | 0.018 | 0.018 | 0.005986 | 0.000045 | 0.03 | 0.25 | 0.0000192 | 0.033 | 0.1 | 3.01337*10-7 |
Haiti | 0.005 | 0.005 | 0.02941 | 0.000071 | 0.03 | 0.25 | 0.0000247 | 0.033 | 0.1 | 2.4658*10-7 |
Honduras | 0.001 | 0.001 | 0.008831 | 0.000075 | 0.03 | 0.25 | 0.000037 | 0.033 | 0.1 | 3.6696*10-10 |
India | 0.001 | 0.001 | 0.09373 | 0.00006 | 0.03 | 0.25 | 0.0000219 | 0.033 | 0.1 | 2.5911*10-9 |
Kenya | 0.204 | 0.204 | 0.001605 | 0.000099 | 0.03 | 0.25 | 0.0000247 | 0.033 | 0.1 | 1.8904*10-6 |
Liberia | 0.220 | 0.220 | 0.0037256 | 0.000099 | 0.03 | 0.25 | 0.0000247 | 0.033 | 0.1 | 1.1818*10-6 |
Nigeria | 0.028 | 0.028 | 0.0506 | 0.0001 | 0.03 | 0.25 | 0.0000384 | 0.033 | 0.1 | 1.3319*10-7 |
Pakistan | 0.023 | 0.023 | 0.010676 | 0.000075 | 0.03 | 0.25 | 0.0000192 | 0.033 | 0.1 | 1.5343*10-6 |
Sierra Leone | 0.114 | 0.114 | 0.0074855 | 0.0001 | 0.03 | 0.25 | 0.0000493 | 0.033 | 0.1 | 8.3397*10-7 |
Sudan | 0.064 | 0.064 | 0.0034228 | 0.000089 | 0.03 | 0.25 | 0.0000247 | 0.033 | 0.1 | 9.05*10-8 |
Uganda | 0.3 | 0.3 | 0.0021354 | 0.000121 | 0.03 | 0.25 | 0.0000193 | 0.033 | 0.1 | 5.2734*10-7 |
Senegal | 0.01773 | 0.01773 | 0.005383 | 0.0001 | 0.03 | 0.25 | 0.0000219 | 0.033 | 0.1 | 1.2547*10-7 |
Eritrea | 0.0042 | 0.0042 | 0.007413 | 0.000092 | 0.03 | 0.25 | 0.0000192 | 0.033 | 0.1 | 1.2421*10-8 |
Gambia | 0.28 | 0.28 | 0.0007616 | 0.000094 | 0.03 | 0.25 | 0.0000274 | 0.033 | 0.1 | 3.86*10-7 |
Other | 0.005 | 0.005 | 0.220536 | 0.00009 | 0.03 | 0.25 | 0.00006 | 0.033 | 0.1 | 1.4227*10-5 |
Country | αmh | αhm | u | λh | βh | αh | μh | μm | θm | μd |
Afghanistan | 0.014 | 0.014 | 0.020845 | 0.000124 | 0.03 | 0.25 | 0.0000219 | 0.033 | 0.1 | 3.1144*10-9 |
Cameroon | 0.096 | 0.096 | 0.0043860 | 0.000094 | 0.03 | 0.25 | 0.0000329 | 0.033 | 0.1 | 6.9372*10-7 |
Cote D'Ivoire | 0.088 | 0.088 | 0.002231 | 0.00009 | 0.03 | 0.25 | 0.0000411 | 0.033 | 0.1 | 2.3603*10-6 |
Ethiopia | 0.037 | 0.037 | 0.010205 | 0.000098 | 0.03 | 0.25 | 0.0000219 | 0.033 | 0.1 | 3.7081*10-8 |
Ghana | 0.080 | 0.080 | 0.013519 | 0.00008 | 0.03 | 0.25 | 0.0000247 | 0.033 | 0.1 | 3.8825*10-7 |
Guinea | 0.081 | 0.081 | 0.00343 | 0.000102 | 0.03 | 0.25 | 0.0000329 | 0.033 | 0.1 | 1.5945*10-7 |
Guyana | 0.018 | 0.018 | 0.005986 | 0.000045 | 0.03 | 0.25 | 0.0000192 | 0.033 | 0.1 | 3.01337*10-7 |
Haiti | 0.005 | 0.005 | 0.02941 | 0.000071 | 0.03 | 0.25 | 0.0000247 | 0.033 | 0.1 | 2.4658*10-7 |
Honduras | 0.001 | 0.001 | 0.008831 | 0.000075 | 0.03 | 0.25 | 0.000037 | 0.033 | 0.1 | 3.6696*10-10 |
India | 0.001 | 0.001 | 0.09373 | 0.00006 | 0.03 | 0.25 | 0.0000219 | 0.033 | 0.1 | 2.5911*10-9 |
Kenya | 0.204 | 0.204 | 0.001605 | 0.000099 | 0.03 | 0.25 | 0.0000247 | 0.033 | 0.1 | 1.8904*10-6 |
Liberia | 0.220 | 0.220 | 0.0037256 | 0.000099 | 0.03 | 0.25 | 0.0000247 | 0.033 | 0.1 | 1.1818*10-6 |
Nigeria | 0.028 | 0.028 | 0.0506 | 0.0001 | 0.03 | 0.25 | 0.0000384 | 0.033 | 0.1 | 1.3319*10-7 |
Pakistan | 0.023 | 0.023 | 0.010676 | 0.000075 | 0.03 | 0.25 | 0.0000192 | 0.033 | 0.1 | 1.5343*10-6 |
Sierra Leone | 0.114 | 0.114 | 0.0074855 | 0.0001 | 0.03 | 0.25 | 0.0000493 | 0.033 | 0.1 | 8.3397*10-7 |
Sudan | 0.064 | 0.064 | 0.0034228 | 0.000089 | 0.03 | 0.25 | 0.0000247 | 0.033 | 0.1 | 9.05*10-8 |
Uganda | 0.3 | 0.3 | 0.0021354 | 0.000121 | 0.03 | 0.25 | 0.0000193 | 0.033 | 0.1 | 5.2734*10-7 |
Senegal | 0.01773 | 0.01773 | 0.005383 | 0.0001 | 0.03 | 0.25 | 0.0000219 | 0.033 | 0.1 | 1.2547*10-7 |
Eritrea | 0.0042 | 0.0042 | 0.007413 | 0.000092 | 0.03 | 0.25 | 0.0000192 | 0.033 | 0.1 | 1.2421*10-8 |
Gambia | 0.28 | 0.28 | 0.0007616 | 0.000094 | 0.03 | 0.25 | 0.0000274 | 0.033 | 0.1 | 3.86*10-7 |
Other | 0.005 | 0.005 | 0.220536 | 0.00009 | 0.03 | 0.25 | 0.00006 | 0.033 | 0.1 | 1.4227*10-5 |
Malaria Country | CDC Data | Model Result |
Afghanistan | 60 | 60.02 |
Cameroon | 62 | 62.04 |
Cote D'Ivoire | 28 | 28.02 |
Ethiopia | 55 | 55.01 |
Ghana | 156 | 156.06 |
Guinea | 40 | 40.04 |
Guyana | 19 | 19.06 |
Haiti | 72 | 72.04 |
Honduras | 21 | 21.02 |
India | 223 | 223.03 |
Kenya | 37 | 37.09 |
Liberia | 90 | 90.04 |
Nigeria | 213 | 213.03 |
Pakistan | 39 | 39.02 |
Sierra Leone | 116 | 116.05 |
Sudan | 32 | 32.06 |
Uganda | 61 | 61.01 |
Senegal | 17 | 17.02 |
Eritrea | 18 | 18.01 |
Gambia | 21 | 21.02 |
Other | 540 | 540.03 |
Malaria Country | CDC Data | Model Result |
Afghanistan | 60 | 60.02 |
Cameroon | 62 | 62.04 |
Cote D'Ivoire | 28 | 28.02 |
Ethiopia | 55 | 55.01 |
Ghana | 156 | 156.06 |
Guinea | 40 | 40.04 |
Guyana | 19 | 19.06 |
Haiti | 72 | 72.04 |
Honduras | 21 | 21.02 |
India | 223 | 223.03 |
Kenya | 37 | 37.09 |
Liberia | 90 | 90.04 |
Nigeria | 213 | 213.03 |
Pakistan | 39 | 39.02 |
Sierra Leone | 116 | 116.05 |
Sudan | 32 | 32.06 |
Uganda | 61 | 61.01 |
Senegal | 17 | 17.02 |
Eritrea | 18 | 18.01 |
Gambia | 21 | 21.02 |
Other | 540 | 540.03 |
Country | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |
Afghanistan | 54.03 | 48.04 | 42.05 | 36.03 | 30.04 | 24.02 | 18.02 | 12.02 | 6.01 |
Cameroon | 55.84 | 49.65 | 43.46 | 37.25 | 31.05 | 24.83 | 18.62 | 12.02 | 6.21 |
Cote D'Ivoire | 25.23 | 22.43 | 19.63 | 16.82 | 14.02 | 11.22 | 8.41 | 5.61 | 2.8 |
Ethiopia | 49.52 | 44.03 | 38.54 | 33.03 | 27.53 | 22.02 | 16.51 | 11.01 | 5.5 |
Ghana | 140.49 | 124.91 | 109.34 | 93.7 | 78.11 | 62.48 | 46.85 | 31.25 | 15.62 |
Guinea | 36.04 | 32.05 | 28.05 | 24.04 | 20.04 | 16.03 | 12.02 | 8.02 | 4.01 |
Guyana | 17.16 | 15.26 | 13.36 | 11.45 | 9.54 | 7.63 | 5.72 | 3.82 | 1.91 |
Haiti | 64.85 | 57.66 | 50.47 | 43.26 | 36.06 | 28.84 | 21.63 | 14.42 | 7.21 |
Honduras | 18.92 | 16.82 | 14.73 | 12.63 | 10.52 | 8.41 | 6.31 | 4.21 | 2.1 |
India | 200.78 | 178.53 | 156.27 | 133.92 | 111.64 | 89.3 | 66.96 | 44.66 | 22.32 |
Kenya | 33.39 | 26.69 | 25.99 | 22.27 | 18.57 | 14.85 | 11.13 | 7.43 | 3.71 |
Liberia | 81.05 | 72.07 | 63.08 | 54.06 | 45.06 | 36.04 | 27.03 | 18.03 | 9.01 |
Nigeria | 191.77 | 170.52 | 149.26 | 127.92 | 106.63 | 85.29 | 63.96 | 42.66 | 21.32 |
Pakistan | 35.12 | 31.23 | 27.34 | 23.43 | 19.53 | 15.62 | 11.71 | 7.81 | 3.9 |
Sierra Leone | 104.47 | 92.89 | 81.31 | 69.68 | 58.09 | 46.46 | 34.84 | 23.24 | 11.61 |
Sudan | 28.86 | 25.66 | 22.46 | 19.25 | 16.04 | 12.83 | 9.62 | 6.42 | 3.21 |
Uganda | 54.92 | 48.83 | 42.74 | 36.63 | 30.54 | 24.42 | 18.31 | 12.21 | 6.1 |
Senegal | 15.32 | 13.62 | 11.93 | 10.22 | 8.52 | 6.81 | 5.11 | 3.41 | 1.7 |
Eritrea | 16.21 | 14.41 | 12.61 | 10.81 | 9.01 | 7.21 | 5.4 | 3.6 | 1.8 |
Gambia | 18.92 | 16.82 | 14.73 | 12.62 | 10.52 | 8.41 | 6.31 | 4.21 | 2.1 |
Other | 486.17 | 432.30 | 378.42 | 324.33 | 270.38 | 216.27 | 162.19 | 108.18 | 54.07 |
Total | 1,729.06 | 1,537.42 | 1,345.77 | 1,153.35 | 961.44 | 768.99 | 576.66 | 384.64 | 192.22 |
Country | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |
Afghanistan | 54.03 | 48.04 | 42.05 | 36.03 | 30.04 | 24.02 | 18.02 | 12.02 | 6.01 |
Cameroon | 55.84 | 49.65 | 43.46 | 37.25 | 31.05 | 24.83 | 18.62 | 12.02 | 6.21 |
Cote D'Ivoire | 25.23 | 22.43 | 19.63 | 16.82 | 14.02 | 11.22 | 8.41 | 5.61 | 2.8 |
Ethiopia | 49.52 | 44.03 | 38.54 | 33.03 | 27.53 | 22.02 | 16.51 | 11.01 | 5.5 |
Ghana | 140.49 | 124.91 | 109.34 | 93.7 | 78.11 | 62.48 | 46.85 | 31.25 | 15.62 |
Guinea | 36.04 | 32.05 | 28.05 | 24.04 | 20.04 | 16.03 | 12.02 | 8.02 | 4.01 |
Guyana | 17.16 | 15.26 | 13.36 | 11.45 | 9.54 | 7.63 | 5.72 | 3.82 | 1.91 |
Haiti | 64.85 | 57.66 | 50.47 | 43.26 | 36.06 | 28.84 | 21.63 | 14.42 | 7.21 |
Honduras | 18.92 | 16.82 | 14.73 | 12.63 | 10.52 | 8.41 | 6.31 | 4.21 | 2.1 |
India | 200.78 | 178.53 | 156.27 | 133.92 | 111.64 | 89.3 | 66.96 | 44.66 | 22.32 |
Kenya | 33.39 | 26.69 | 25.99 | 22.27 | 18.57 | 14.85 | 11.13 | 7.43 | 3.71 |
Liberia | 81.05 | 72.07 | 63.08 | 54.06 | 45.06 | 36.04 | 27.03 | 18.03 | 9.01 |
Nigeria | 191.77 | 170.52 | 149.26 | 127.92 | 106.63 | 85.29 | 63.96 | 42.66 | 21.32 |
Pakistan | 35.12 | 31.23 | 27.34 | 23.43 | 19.53 | 15.62 | 11.71 | 7.81 | 3.9 |
Sierra Leone | 104.47 | 92.89 | 81.31 | 69.68 | 58.09 | 46.46 | 34.84 | 23.24 | 11.61 |
Sudan | 28.86 | 25.66 | 22.46 | 19.25 | 16.04 | 12.83 | 9.62 | 6.42 | 3.21 |
Uganda | 54.92 | 48.83 | 42.74 | 36.63 | 30.54 | 24.42 | 18.31 | 12.21 | 6.1 |
Senegal | 15.32 | 13.62 | 11.93 | 10.22 | 8.52 | 6.81 | 5.11 | 3.41 | 1.7 |
Eritrea | 16.21 | 14.41 | 12.61 | 10.81 | 9.01 | 7.21 | 5.4 | 3.6 | 1.8 |
Gambia | 18.92 | 16.82 | 14.73 | 12.62 | 10.52 | 8.41 | 6.31 | 4.21 | 2.1 |
Other | 486.17 | 432.30 | 378.42 | 324.33 | 270.38 | 216.27 | 162.19 | 108.18 | 54.07 |
Total | 1,729.06 | 1,537.42 | 1,345.77 | 1,153.35 | 961.44 | 768.99 | 576.66 | 384.64 | 192.22 |
Country | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |
Afghanistan | 58.12 | 56.16 | 54.14 | 51.87 | 49.37 | 46.42 | 42.75 | 37.73 | 30.16 |
Cameroon | 55.81 | 49.43 | 42.91 | 36.34 | 29.79 | 23.42 | 17.45 | 12.14 | 7.66 |
Cote D'Ivoire | 25.18 | 22.27 | 19.32 | 16.36 | 13.44 | 10.63 | 8.01 | 5.67 | 3.66 |
Ethiopia | 50.15 | 45.46 | 40.95 | 36.63 | 32.46 | 28.41 | 24.37 | 20.12 | 15.22 |
Ghana | 140.02 | 123.75 | 107.33 | 91.00 | 75.05 | 59.78 | 45.64 | 32.99 | 21.83 |
Guinea | 35.93 | 31.75 | 27.54 | 23.34 | 19.24 | 15.31 | 11.66 | 8.41 | 5.55 |
Guyana | 18.25 | 17.43 | 16.60 | 15.74 | 14.81 | 13.78 | 12.55 | 10.98 | 8.71 |
Haiti | 71.15 | 70.1 | 68.84 | 67.26 | 65.21 | 62.43 | 58.44 | 52.38 | 42.38 |
Honduras | 20.84 | 20.61 | 20.31 | 19.91 | 19.37 | 18.61 | 17.48 | 15.71 | 12.74 |
India | 221.1 | 218.65 | 215.49 | 211.32 | 205.58 | 197.49 | 185.47 | 166.69 | 135.18 |
Kenya | 33.91 | 30.51 | 26.90 | 23.70 | 19.04 | 14.88 | 10.67 | 6.66 | 3.35 |
Liberia | 82.45 | 74.33 | 65.67 | 56.43 | 46.67p> | 36.51 | 26.19 | 16.28 | 8.01 |
Nigeria | 198.11 | 183.65 | 169.59 | 155.75 | 142.02 | 128.04 | 113.13 | 96.19 | 74.54 |
Pakistan | 36.80 | 34.62 | 32.47 | 30.30 | 28.07 | 25.72 | 23.10 | 19.92 | 15.63 |
Sierra Leone | 104.75 | 93.06 | 80.98 | 68.66 | 56.19 | 43.87 | 32.13 | 21.61 | 12.96 |
Sudan | 28.71 | 25.38 | 22.08 | 18.86 | 15.78 | 12.87 | 10.17 | 7.70 | 5.35 |
Uganda | 56.29 | 51.16 | 45.59 | 39.53 | 33.00 | 26.03 | 18.76 | 11.55 | 5.31 |
Senegal | 16.31 | 15.59 | 14.86 | 14.10 | 13.28 | 12.36 | 11.27 | 9.86 | 7.83 |
Eritrea | 17.80 | 17.56 | 17.26 | 16.88 | 16.38 | 15.7 | 14.71 | 13.19 | 10.68 |
Gambia | 19.36 | 17.56 | 15.62 | 13.52 | 11.26 | 8.86 | 6.38 | 3.93 | 1.83 |
Other | 533.34 | 525.49 | 516.02 | 504.20 | 488.82 | 468.03 | 438.16 | 392.72 | 317.79 |
Total | 1,824.38 | 1,724.52 | 1,620.43 | 1,511.7 | 1,394.83 | 1,269.15 | 1,128.49 | 962.43 | 746.37 |
Country | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |
Afghanistan | 58.12 | 56.16 | 54.14 | 51.87 | 49.37 | 46.42 | 42.75 | 37.73 | 30.16 |
Cameroon | 55.81 | 49.43 | 42.91 | 36.34 | 29.79 | 23.42 | 17.45 | 12.14 | 7.66 |
Cote D'Ivoire | 25.18 | 22.27 | 19.32 | 16.36 | 13.44 | 10.63 | 8.01 | 5.67 | 3.66 |
Ethiopia | 50.15 | 45.46 | 40.95 | 36.63 | 32.46 | 28.41 | 24.37 | 20.12 | 15.22 |
Ghana | 140.02 | 123.75 | 107.33 | 91.00 | 75.05 | 59.78 | 45.64 | 32.99 | 21.83 |
Guinea | 35.93 | 31.75 | 27.54 | 23.34 | 19.24 | 15.31 | 11.66 | 8.41 | 5.55 |
Guyana | 18.25 | 17.43 | 16.60 | 15.74 | 14.81 | 13.78 | 12.55 | 10.98 | 8.71 |
Haiti | 71.15 | 70.1 | 68.84 | 67.26 | 65.21 | 62.43 | 58.44 | 52.38 | 42.38 |
Honduras | 20.84 | 20.61 | 20.31 | 19.91 | 19.37 | 18.61 | 17.48 | 15.71 | 12.74 |
India | 221.1 | 218.65 | 215.49 | 211.32 | 205.58 | 197.49 | 185.47 | 166.69 | 135.18 |
Kenya | 33.91 | 30.51 | 26.90 | 23.70 | 19.04 | 14.88 | 10.67 | 6.66 | 3.35 |
Liberia | 82.45 | 74.33 | 65.67 | 56.43 | 46.67p> | 36.51 | 26.19 | 16.28 | 8.01 |
Nigeria | 198.11 | 183.65 | 169.59 | 155.75 | 142.02 | 128.04 | 113.13 | 96.19 | 74.54 |
Pakistan | 36.80 | 34.62 | 32.47 | 30.30 | 28.07 | 25.72 | 23.10 | 19.92 | 15.63 |
Sierra Leone | 104.75 | 93.06 | 80.98 | 68.66 | 56.19 | 43.87 | 32.13 | 21.61 | 12.96 |
Sudan | 28.71 | 25.38 | 22.08 | 18.86 | 15.78 | 12.87 | 10.17 | 7.70 | 5.35 |
Uganda | 56.29 | 51.16 | 45.59 | 39.53 | 33.00 | 26.03 | 18.76 | 11.55 | 5.31 |
Senegal | 16.31 | 15.59 | 14.86 | 14.10 | 13.28 | 12.36 | 11.27 | 9.86 | 7.83 |
Eritrea | 17.80 | 17.56 | 17.26 | 16.88 | 16.38 | 15.7 | 14.71 | 13.19 | 10.68 |
Gambia | 19.36 | 17.56 | 15.62 | 13.52 | 11.26 | 8.86 | 6.38 | 3.93 | 1.83 |
Other | 533.34 | 525.49 | 516.02 | 504.20 | 488.82 | 468.03 | 438.16 | 392.72 | 317.79 |
Total | 1,824.38 | 1,724.52 | 1,620.43 | 1,511.7 | 1,394.83 | 1,269.15 | 1,128.49 | 962.43 | 746.37 |
Country | USA Protected | Mosquitoes Killed | Malaria cases |
Afghanistan | 90% | 70% | 4.27 |
Cameroon | 90% | 70% | 1.75 |
Cote D'Ivoire | 90% | 70% | 0.80 |
Ethiopia | 90% | 70% | 2.44 |
Ghana | 90% | 70% | 4.56 |
Guinea | 90% | 70% | 1.17 |
Guyana | 90% | 70% | 1.26 |
Haiti | 90% | 70% | 5.85 |
Honduras | 90% | 70% | 1.75 |
India | 90% | 70% | 18.56 |
Kenya | 90% | 70% | 1.07 |
Liberia | 90% | 70% | 2.62 |
Nigeria | 90% | 70% | 11.32 |
Pakistan | 90% | 70% | 2.31 |
Sierra Leone | 90% | 70% | 3.21 |
Sudan | 90% | 70% | 1.02 |
Uganda | 90% | 70% | 1.88 |
Senegal | 90% | 70% | 1.13 |
Eritrea | 90% | 70% | 1.47 |
Gambia | 90% | 60% | 0.64 |
Other | 90% | 70% | 43.85 |
Country | USA Protected | Mosquitoes Killed | Malaria cases |
Afghanistan | 90% | 70% | 4.27 |
Cameroon | 90% | 70% | 1.75 |
Cote D'Ivoire | 90% | 70% | 0.80 |
Ethiopia | 90% | 70% | 2.44 |
Ghana | 90% | 70% | 4.56 |
Guinea | 90% | 70% | 1.17 |
Guyana | 90% | 70% | 1.26 |
Haiti | 90% | 70% | 5.85 |
Honduras | 90% | 70% | 1.75 |
India | 90% | 70% | 18.56 |
Kenya | 90% | 70% | 1.07 |
Liberia | 90% | 70% | 2.62 |
Nigeria | 90% | 70% | 11.32 |
Pakistan | 90% | 70% | 2.31 |
Sierra Leone | 90% | 70% | 3.21 |
Sudan | 90% | 70% | 1.02 |
Uganda | 90% | 70% | 1.88 |
Senegal | 90% | 70% | 1.13 |
Eritrea | 90% | 70% | 1.47 |
Gambia | 90% | 60% | 0.64 |
Other | 90% | 70% | 43.85 |
[1] |
Bassidy Dembele, Abdul-Aziz Yakubu. Optimal treated mosquito bed nets and insecticides for eradication of malaria in Missira. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1831-1840. doi: 10.3934/dcdsb.2012.17.1831 |
[2] |
Moussa Doumbia, Abdul-Aziz Yakubu. Malaria incidence and anopheles mosquito density in irrigated and adjacent non-irrigated villages of Niono in Mali. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 841-857. doi: 10.3934/dcdsb.2017042 |
[3] |
Hui Wan, Jing-An Cui. A model for the transmission of malaria. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 479-496. doi: 10.3934/dcdsb.2009.11.479 |
[4] |
Jia Li. A malaria model with partial immunity in humans. Mathematical Biosciences & Engineering, 2008, 5 (4) : 789-801. doi: 10.3934/mbe.2008.5.789 |
[5] |
Hui Wan, Huaiping Zhu. A new model with delay for mosquito population dynamics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1395-1410. doi: 10.3934/mbe.2014.11.1395 |
[6] |
M. Predescu, R. Levins, T. Awerbuch-Friedlander. Analysis of a nonlinear system for community intervention in mosquito control. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 605-622. doi: 10.3934/dcdsb.2006.6.605 |
[7] |
Expeditho Mtisi, Herieth Rwezaura, Jean Michel Tchuenche. A mathematical analysis of malaria and tuberculosis co-dynamics. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 827-864. doi: 10.3934/dcdsb.2009.12.827 |
[8] |
Hongyan Yin, Cuihong Yang, Xin'an Zhang, Jia Li. The impact of releasing sterile mosquitoes on malaria transmission. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3837-3853. doi: 10.3934/dcdsb.2018113 |
[9] |
G.A. Ngwa. Modelling the dynamics of endemic malaria in growing populations. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1173-1202. doi: 10.3934/dcdsb.2004.4.1173 |
[10] |
Yanyu Xiao, Xingfu Zou. On latencies in malaria infections and their impact on the disease dynamics. Mathematical Biosciences & Engineering, 2013, 10 (2) : 463-481. doi: 10.3934/mbe.2013.10.463 |
[11] |
Jia Li. Malaria model with stage-structured mosquitoes. Mathematical Biosciences & Engineering, 2011, 8 (3) : 753-768. doi: 10.3934/mbe.2011.8.753 |
[12] |
Jinliang Wang, Jingmei Pang, Toshikazu Kuniya. A note on global stability for malaria infections model with latencies. Mathematical Biosciences & Engineering, 2014, 11 (4) : 995-1001. doi: 10.3934/mbe.2014.11.995 |
[13] |
Liming Cai, Jicai Huang, Xinyu Song, Yuyue Zhang. Bifurcation analysis of a mosquito population model for proportional releasing sterile mosquitoes. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6279-6295. doi: 10.3934/dcdsb.2019139 |
[14] |
Mengyun Zhang, Zhigui Lin. The diffusive model for Aedes aegypti mosquito on a periodically evolving domain. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4703-4720. doi: 10.3934/dcdsb.2018330 |
[15] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[16] |
Yuanxian Hui, Genghong Lin, Jianshe Yu, Jia Li. A delayed differential equation model for mosquito population suppression with sterile mosquitoes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4659-4676. doi: 10.3934/dcdsb.2020118 |
[17] |
Ruijun Zhao, Jemal Mohammed-Awel. A mathematical model studying mosquito-stage transmission-blocking vaccines. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1229-1245. doi: 10.3934/mbe.2014.11.1229 |
[18] |
Xianyun Chen, Daozhou Gao. Effects of travel frequency on the persistence of mosquito-borne diseases. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4677-4701. doi: 10.3934/dcdsb.2020119 |
[19] |
Naveen K. Vaidya, Feng-Bin Wang. Persistence of mosquito vector and dengue: Impact of seasonal and diurnal temperature variations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 393-420. doi: 10.3934/dcdsb.2021048 |
[20] |
Derdei Bichara, Nathalie Cozic, Abderrahman Iggidr. On the estimation of sequestered infected erythrocytes in Plasmodium falciparum malaria patients. Mathematical Biosciences & Engineering, 2014, 11 (4) : 741-759. doi: 10.3934/mbe.2014.11.741 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]