Advanced Search
Article Contents
Article Contents

On application of optimal control to SEIR normalized models: Pros and cons

Abstract Full Text(HTML) Figure(10) / Table(3) Related Papers Cited by
  • In this work we normalize a SEIR model that incorporates exponential natural birth and death, as well as disease-caused death. We use optimal control to control by vaccination the spread of a generic infectious disease described by a normalized model with $L^1$ cost. We discuss the pros and cons of SEIR normalized models when compared with classical models when optimal control with $L^1$ costs are considered. Our discussion highlights the role of the cost. Additionally, we partially validate our numerical solutions for our optimal control problem with normalized models using the Maximum Principle.

    Mathematics Subject Classification: Primary: 49K15, 49N90; Secondary: 49M37.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Fluid Analogy of the Normalized SEIR compartmental model.

    Figure 2.  Optimal control for $(P)$: parameters in tables 1 and 2. Left: Optimal control different dead rates: in red for $d=0.0099$ and in blue for $d=0.0005$. Right: Optimal control with different initial values. In red for $S_0$, $E_0$, $I_0$ and $R_0$ as in the table 2 in blue for initial conditions $S_0\times 100$, $E_0\times 100$, $I_0\times 100$ and $R_0\times 100$.

    Figure 3.  Optimal control for $(P_n)$ with $\rho=500$ in blue. Optimal control calculated for $(P)$ in blue. The parameters are described in tables 1, 3, and 2.

    Figure 4.  Case 1: Computed optimal control $u^*$ plotted together with the singular control computed according to (22) and with the switching function $\phi$. During the first five years $\phi(t)>1$ and during the last eight years $\phi(t)<0$.

    Figure 5.  Case 1: optimal trajectories (including $r$).

    Figure 6.  Case 2: Computed optimal control $u^*$ plotted together with the scaled switching function $\phi$. During the last seventeen years $\phi(t)<0$.

    Figure 7.  Case 2: optimal trajectories.

    Figure 8.  Case 3: Computed optimal control $u^*$ plotted together with the scaled switching function $\phi$. During the first sixteen years $\phi(t)>0$ and during the last three years $\phi(t)<0$.

    Figure 9.  Case 3: Optimal trajectories.

    Figure 10.  Optimal vaccinated rate, $u^*$, in red. Approximate control $u_{apr}$, in blue dash. $\rho=500$ and $u \in [0,1]$.

    Table 1.  Parameters for SEIR models

    Parameter Description Value
    b Natural birth rate 0.01
    d Death rate 0.0099
    c Incidence coefficient 1.1
    f Exposed to infectious rate 0.5
    g Recovery rate 0.1
    a Disease induced death rate 0.2
    T Number of years 20
     | Show Table
    DownLoad: CSV

    Table 2.  Initial Conditions and cost parameters for problems with classical SEIR model

    Parameter Description Value
    A weight parameter 1
    B weight parameter 2
    S0 Initial susceptible population 1000
    E0 Initial exposed population 100
    I0 Initial infected population 50
    R0 Initial recovered population 15
    N0 Initial population 1165
     | Show Table
    DownLoad: CSV

    Table 3.  Initial Conditions and cost parameters for problems with classical SEIR model normalized model.

    Parameter Description Value
    s0 Percentage of initial susceptible population 0.858
    e0 Percentage of initial exposed population 0.086
    i0 Percentage of initial infected population 0.043
     | Show Table
    DownLoad: CSV
  • [1] M. BiswasL. Paiva and M. de Pinho, A SEIR model for control of infectious diseases with constraints, Mathematical Biosciences and Engineering, 11 (2014), 761-784.  doi: 10.3934/mbe.2014.11.761.
    [2] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-3516-1.
    [3] C. Buskens and D. Wassel, The ESA NLP solver WORHP, Modeling and optimization in space engineering, Springer Optim. Appl., Springer, New York, 73 (2013), 85-110.  doi: 10.1007/978-1-4614-4469-5_4.
    [4] V. Capasso, Mathematical Structures of Epidemic Systems Springer-Verlag, Berlin Heidelberg, 2008.
    [5] F. Clarke, Optimization and Nonsmooth Analysis John Wiley & Sons, New York, 1983.
    [6] M. de PinhoI. Kornienko and H. Maurer, Optimal control of a SEIR model with mixed constraints and $L^1$ cost, Springer International Publishing, Switzerland, Lecture Notes in Electrical Engineering, 312 (2015), 135-145. 
    [7] R. FourerD. Gay and B. KernighanAMPL: A Modeling Language for Mathematical Programming, Duxbury Press, Brooks–Cole Publishing Company, USA, (1993). 
    [8] A. Friedman and C. Kao, Mathematical Modeling of Biological Processes Springer, Switzerland, 2014. doi: 10.1007/978-3-319-08314-8.
    [9] H. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.  doi: 10.1137/S0036144500371907.
    [10] H. Hethcote, The basic epidemiology models: Models, expressions for $r_0$, parameter estimation, and applications, Mathematical Understanding of Infectious Disease Dynamics (S. Ma and Y. Xia, Eds.), World Scientific Publishing Co. Pte. Ltd., Singapore, 16 (2009), 1-61.  doi: 10.1142/9789812834836_0001.
    [11] W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proceedings of the Royal Society of London. Series A Containing papers of a Mathematical and Physical Nature, 115.
    [12] A. KorobeinikovE. V. Grigorieva and E. N. Khailov, Optimal control for an epidemic in a population of varying size, Discrete Contin. Dyn. Syst., (2015), 549-561.  doi: 10.3934/proc.2015.0549.
    [13] U. Ledzewicz and H. Schaettler, On optimal singular controls for a general sir-model with vaccination and treatment supplement, Discrete and Continuous Dynamical Systems, Series B, 2 (2011), 981-990. 
    [14] M. Y. LiJ. R. GraefL. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size, Mathematical Biosciences, 160 (1999), 191-213.  doi: 10.1016/S0025-5564(99)00030-9.
    [15] H. MaurerC. BuskensJ.-H. R. Kim and C. Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bang-bang controls, Optimal Control Applications and Methods, 26 (2015), 129-156.  doi: 10.1002/oca.756.
    [16] H. Maurer and M. R. de Pinho, Optimal control of seir models in epidemiology with l$^1$ objectives, https://hal.inria.fr/hal-01101291/file/Maurer-dePinho-SEIR.pdf. (Accepted)
    [17] R. M. Neilan and S. Lenhart, An introduction to optimal control with an application in disease modeling, DIMACS Series in Discrete Mathematics, 75 (2010), 67-81. 
    [18] K. OkosunO. Rachid and N. Marcus, Optimal control strategies and cost-effectiveness analysis of a malaria model, Biosystems, 111 (2013), 83-101.  doi: 10.1016/j.biosystems.2012.09.008.
    [19] N P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control SIAM Advances in Design and Control, 24 SIAM Publications, Philadelphia, 2012. doi: 10.1137/1.9781611972368.
    [20] H. Schaettler and U. Ledzewicz, Geometric Optimal Control. Theory, Methods and Examples Springer, New York, 2012. doi: 10.1007/978-1-4614-3834-2.
    [21] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.  doi: 10.1007/s10107-004-0559-y.
  • 加载中




Article Metrics

HTML views(295) PDF downloads(122) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint