[1]
|
B. Andreianov, C. Donadello, U. Razafison, J. Y. Rolland and M. D. Rosini, Solutions of the Aw-Rascle-Zhang system with point constraints, Networks and Heterogeneous Media, 11 (2016), 29-47.
doi: 10.3934/nhm.2016.11.29.
|
[2]
|
B. Andreianov, C. Donadello and M. D. Rosini, A second-order model for vehicular traffics with local point constraints on the flow, Mathematical Models and Methods in Applied Sciences, 26 (2016), 751-802.
doi: 10.1142/S0218202516500172.
|
[3]
|
A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic Follow-the-Leader models, SIAM Journal on Applied Mathematics, 63 (2002), 259-278.
doi: 10.1137/S0036139900380955.
|
[4]
|
A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916-938.
doi: 10.1137/S0036139997332099.
|
[5]
|
P. Bagnerini and M. Rascle, A multi-class homogenized hyperbolic model of traffic flow, SIAM Journal of Mathematical Analysis, 35 (2003), 949-973.
doi: 10.1137/S0036141002411490.
|
[6]
|
F. Berthelin, P. Degond, M. Delitala and M. Rascle, A model for the formation and evolution of traffic jams, Archive for Rational Mechanics and Analysis, 187 (2008), 185-220.
doi: 10.1007/s00205-007-0061-9.
|
[7]
|
A. Bressan,
Hyperbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem vol. 20, Oxford university press, 2000.
|
[8]
|
C. Chalons and P. Goatin, Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling, Commun. Math. Sci., 5 (2007), 533-551.
doi: 10.4310/CMS.2007.v5.n3.a2.
|
[9]
|
M. Di Francesco and M. Rosini, Rigorous derivation of nonlinear scalar conservation laws from Follow-the-Leader type models via many particle limit, Archive for Rational Mechanics and Analysis, 217 (2015), 831-871.
doi: 10.1007/s00205-015-0843-4.
|
[10]
|
M. Di Francesco, S. Fagioli and M. D. Rosini, Deterministic particle approximation of scalar conservation laws, preprint, arXiv: 1605.05883.
|
[11]
|
M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo, Deterministic particle approximation of the Hughes model in one space dimension, preprint, arXiv: 1602.06153.
|
[12]
|
M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo, Follow-the-leader approximations of macroscopic models for vehicular and pedestrian flows, preprint.
|
[13]
|
R. E. Ferreira and C. I. Kondo, Glimm method and wave-front tracking for the Aw-Rascle traffic flow model, Far East J. Math. Sci., 43 (2010), 203-223.
|
[14]
|
D. C. Gazis, R. Herman and R. W. Rothery, Nonlinear Follow-the-Leader models of traffic flow, Operations Res., 9 (1961), 545-567.
doi: 10.1287/opre.9.4.545.
|
[15]
|
M. Godvik and H. Hanche-Olsen, Existence of solutions for the Aw-Rascle traffic flow model with vacuum, Journal of Hyperbolic Differential Equations, 5 (2008), 45-63.
doi: 10.1142/S0219891608001428.
|
[16]
|
M. Lighthill and G. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Royal Society of London. Series A, Mathematical and Physical Sciences, 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089.
|
[17]
|
S. Moutari and M. Rascle, A hybrid lagrangian model based on the Aw-Rascle traffic flow model, SIAM Journal on Applied Mathematics, 68 (2007), 413-436.
doi: 10.1137/060678415.
|
[18]
|
I. Prigogine and R. Herman, Kinetic theory of vehicular traffic IEEE Transactions on Systems, Man, and Cybernetics, 2 (1972), p295.
doi: 10.1109/TSMC.1972.4309114.
|
[19]
|
P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42.
|
[20]
|
A. I. Vol'pert, The spaces BV and quasilinear equations, (Russian) Mat. Sb. (N.S.), 73 (1967), 255-302.
|
[21]
|
H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290.
doi: 10.1016/S0191-2615(00)00050-3.
|