[1]
|
M. Anguelova and B. Wennberg, State elimination and identifiability of the delay parameter for nonlinear time-delay systems, Automatica, 44 (2008), 1373-1378.
doi: 10.1016/j.automatica.2007.10.013.
|
[2]
|
C. T. H. Baker and E. I. Parmuzin, Identification of the initial function for nonlinear delay differential equations, Russ. J. Numer. Anal. Math. Modelling, 20 (2005), 45-66.
doi: 10.1515/1569398053270831.
|
[3]
|
C. T. H. Baker and E. I. Parmuzin, Initial function estimation for scalar neutral delay differential equations, Russ. J. Numer. Anal. Math. Modelling, 23 (2008), 163-183.
doi: 10.1515/RJNAMM.2008.010.
|
[4]
|
L. Belkoura, J. P. Richard and M. Fliess, Parameters estimation of systems with delayed and structured entries, Automatica, 45 (2009), 1117-1125.
doi: 10.1016/j.automatica.2008.12.026.
|
[5]
|
K. Fujarewicz and A. Galuszka, Generalized backpropagation through time for continuous time neural networks and discrete time measurements, Artificial Intelligence and Soft Computing -ICAISC 2004 (eds. L. Rutkowski, J. Siekmann, R. Tadeusiewicz and L. A. Zadeh), Lecture Notes in Computer Science, 3070 (2004), 190-196.
|
[6]
|
K. Fujarewicz, M. Kimmel and A. Swierniak, On fitting of mathematical models of cell signaling pathways using adjoint systems, Math. Biosci. Eng., 2 (2005), 527-534.
doi: 10.3934/mbe.2005.2.527.
|
[7]
|
K. Fujarewicz, M. Kimmel, T. Lipniacki and A. Swierniak, Adjoint systems for models of cell signalling pathways and their application to parametr fitting, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4 (2007), 322-335.
|
[8]
|
K. Fujarewicz and K. Lakomiec, Parameter estimation of systems with delays via structural sensitivity analysis, Discrete and Continuous Dynamical Systems -series B, 19 (2014), 2521-2533.
doi: 10.3934/dcdsb.2014.19.2521.
|
[9]
|
K. Fujarewicz and K. Lakomiec, Adjoint sensitivity analysis of a tumor growth model and its application to spatiotemporal radiotherapy optimization, Mathematical Biosciences and Engineering, 13 (2016), 1131-1142.
|
[10]
|
M. Jakubczak and K. Fujarewicz, Application of adjoint sensitivity analysis to parameter estimation of age-structured model of cell cycle, in Information Technologies in Medicine, (eds. E. Pietka, P. Badura, J. Kawa and W. Wieclawek), Advances in Intelligent Systems and Computing, 472 (2016), 123-131.
|
[11]
|
K. Ł akomiec, S. Kumala, R. Hancock, J. Rzeszowska-Wolny and K. Fujarewicz, Modeling the repair of DNA strand breaks caused by $γ$-radiation in a minichromosome,
Physical Biology 11 (2014), 045003.
|
[12]
|
M. Liu, Q. G. Wang, B. Huang and C. C. Hang, Improved identification of continuous-time delay processes from piecewise step tests, Journal of Process Control, 17 (2007), 51-57.
doi: 10.1016/j.jprocont.2006.08.002.
|
[13]
|
R. Loxton, K. L. Teo and V. Rehbock, An optimization approach to state-delay identification, IEEE Transactions on Automatic Control, 55 (2010), 2113-2119.
doi: 10.1109/TAC.2010.2050710.
|
[14]
|
B. Ni, D. Xiao and S. L. Shah, Time delay estimation for MIMO dynamical systems with time-frequency domain analysis, Journal of Process Control, 20 (2010), 83-94.
doi: 10.1016/j.jprocont.2009.10.002.
|
[15]
|
B. Rakshit, A. R. Chowdhury and P. Saha, Parameter estimation of a delay dynamical system using synchronization inpresence of noise, Chaos, Solitons and Fractals, 32 (2007), 1278-1284.
|
[16]
|
J. P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica, 39 (2003), 1667-1694.
doi: 10.1016/S0005-1098(03)00167-5.
|
[17]
|
Y. Tang and X. Guan, Parameter estimation of chaotic system with time-delay: A differential evolution approach, Chaos, Solitons and Fractals, 42 (2009), 3132-3139.
doi: 10.1016/j.chaos.2009.04.045.
|
[18]
|
Y. Tang and X. Guan, Parameter estimation for time-delay chaotic systems by particle swarm optimization, Chaos, Solitons and Fractals, 40 (2009), 1391-1398.
doi: 10.1016/j.chaos.2007.09.055.
|