[1]
|
E. Afenya, Using mathematical modeling as a resource in clinical trials, Math. Biosci. and Engr., (MBE), 2 (2005), 421-436.
doi: 10.3934/mbe.2005.2.421.
|
[2]
|
N. André, S. Abed, D. Orbach, C. Armari Alla, L. Padovani, E. Pasquier, J. C. Gentet and A. Verschuur, Pilot study of a pediatric metronomic 4-drug regimen, Oncotarget, 2 (2011), 960-965.
|
[3]
|
N. André, L. Padovani and E. Pasquier, Metronomic scheduling of anticancer treatment: The next generation of multitarget therapy?, Future Oncology, 7 (2011), 385-394.
|
[4]
|
D. Barbolosi, J. Ciccolini, B. Lacarelle, F. Barlési and N. André, Computational oncology-mathematical modelling of drug regimens for precision medicine, Nat. Rev. Clin. Oncol., 13 (2016), 242-254.
doi: 10.1038/nrclinonc.2015.204.
|
[5]
|
J. Bellmunt, J. M. Trigo, E. Calvo, J. Carles, J. L. Pérez-Garci, J. Rubió, J. A. Virizuela,
R. López, M. L´azaro and J. Albanell, Activity of a multitargeted chemo-switch regimen (sorafenib, gemcitabine, and metronomic capecitabine) in metastatic renal-cell carcinoma: a phase 2 study (SOGUG-02-06), Lancet Oncol., 11 (2010), 350-357, http://www.ncbi.nlm.nih.gov/pubmed/20163987.
doi: 10.1016/S1470-2045(09)70383-3.
|
[6]
|
G. Bocci, K. Nicolaou and R. S. Kerbel, Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs, Cancer Research, 62 (2002), 6938-6943.
|
[7]
|
B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Series: Mathematics and Applications, Springer-Verlag, Berlin, 2003.
|
[8]
|
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Sciences, 2007.
|
[9]
|
T. Browder, C. E. Butterfield, B. M. Kräling, B. Shi, B. Marshall, M. S. O'Reilly and J. Folkman, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer, Cancer Research, 60 (2000), 1878-1886.
|
[10]
|
A. Friedman and Y. Kim, Tumor cell proliferation and migration under the influence of their microenvironment, Mathematical Biosciences and Engineering -MBE, 8 (2011), 371-383.
doi: 10.3934/mbe.2011.8.371.
|
[11]
|
R. A. Gatenby, A. S. Silva, R. J. Gillies and B. R. Frieden, Adaptive therapy, Cancer Research, 69 (2009), 4894-4903.
doi: 10.1158/0008-5472.CAN-08-3658.
|
[12]
|
R. A. Gatenby, A change of strategy in the war on cancer, Nature, 459 (2009), 508-509.
doi: 10.1038/459508a.
|
[13]
|
J. H. Goldie, Drug resistance in cancer: A perspective, Cancer and Metastasis Review, 20 (2001), 63-68.
|
[14]
|
J. H. Goldie and A. Coldman, Drug Resistance in Cancer, Cambridge University Press, 1998.
doi: 10.1017/CBO9780511666544.
|
[15]
|
R. Grantab, S. Sivananthan and I. F. Tannock, The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells, Cancer Research, 66 (2006), 1033-1039.
doi: 10.1158/0008-5472.CAN-05-3077.
|
[16]
|
J. Greene, O. Lavi, M. M. Gottesman and D. Levy, The impact of cell density and mutations in a model of multidrug resistance in solid tumors, Bull. Math. Biol., 74 (2014), 627-653.
doi: 10.1007/s11538-014-9936-8.
|
[17]
|
P. Hahnfeldt and L. Hlatky, Cell resensitization during protracted dosing of heterogeneous cell populations, Radiation Research, 150 (1998), 681-687.
doi: 10.2307/3579891.
|
[18]
|
P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Research, 59 (1999), 4770-4775.
|
[19]
|
P. Hahnfeldt, J. Folkman and L. Hlatky, Minimizing long-term burden: The logic for metronomic chemotherapeutic dosing and its angiogenic basis, J. of Theoretical Biology, 220 (2003), 545-554.
doi: 10.1006/jtbi.2003.3162.
|
[20]
|
D. Hanahan, G. Bergers and E. Bergsland, Less is more, regularly: Metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice, J. Clinical Investigations, 105 (2000), 1045-1047.
doi: 10.1172/JCI9872.
|
[21]
|
Y. B. Hao, S. Y. Yi, J. Ruan, L. Zhao and K. J. Nan, New insights into metronomic chemotherapy-induced immunoregulation, Cancer Letters, 354 (2014), 220-226.
doi: 10.1016/j.canlet.2014.08.028.
|
[22]
|
L.E. Harnevo and Z. Agur, Drug resistance as a dynamic process in a model for multistep gene amplification under various levels of selection stringency, Cancer Chemotherapy and Pharmacology, 30 (1992), 469-476.
doi: 10.1007/BF00685599.
|
[23]
|
B. Kamen, E. Rubin, J. Aisner and E. Glatstein, High-time chemotherapy or high time for low dose?, J. Clinical Oncology, editorial, 18 (2000), 2935-2937.
|
[24]
|
G. Klement, S. Baruchel, J. Rak, S. Man, K. Clark, D.J. Hicklin, P. Bohlen and R.S. Kerbel, Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity, J. Clinical Investigations, 105 (2000), R15-R24.
|
[25]
|
O. Lavi, J. Greene, D. Levy and M. Gottesman, The role of cell density and intratumoral heterogeneity in multidrug resistance, Cancer Research, 73 (2013), 7168-7175.
doi: 10.1158/0008-5472.CAN-13-1768.
|
[26]
|
U. Ledzewicz, B. Amini and H. Schättler, Dynamics and control of a mathematical model for metronomic chemotherapy, Math. Biosci. and Engr., (MBE), 12 (2015), 1257-1275.
doi: 10.3934/mbe.2015.12.1257.
|
[27]
|
U. Ledzewicz, K. Bratton and H. Schättler, A 3-compartment model for chemotherapy of heterogeneous tumor populations, Acta Applicanda Mathematicae, 135 (2015), 191-207.
doi: 10.1007/s10440-014-9952-6.
|
[28]
|
U. Ledzewicz, H. Maurer and H. Schättler, Minimizing tumor volume for a mathematical model of anti-angiogenesis with linear pharmacokinetics, in: Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring and W. Michiels, Eds., (2010), 267-276.
doi: 10.1007/978-3-642-12598-0_23.
|
[29]
|
U. Ledzewicz and H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem, Discr. Cont. Dyn. Syst., Ser. B, 6 (2006), 129-150.
|
[30]
|
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Contr. Optim., 46 (2007), 1052-1079.
doi: 10.1137/060665294.
|
[31]
|
U. Ledzewicz and H. Schättler, Singular controls and chattering arcs in optimal control problems arising in biomedicine, Control and Cybernetics, 38 (2009), 1501-1523.
|
[32]
|
U. Ledzewicz and H. Schättler, On optimal chemotherapy for heterogeneous tumors, J. of Biological Systems, 22 (2014), 177-197.
doi: 10.1142/S0218339014400014.
|
[33]
|
U. Ledzewicz, H. Schättler, M. Reisi Gahrooi and S. Mahmoudian Dehkordi, On the MTD paradigm and optimal control for multi-drug cancer chemotherapy, Math. Biosci. and Engr. (MBE), 10 (2013), 803-819.
doi: 10.3934/mbe.2013.10.803.
|
[34]
|
D. Liberzon, Calculus of Variations and Optimal Control Theory, Princeton University Press, Princeton, NJ, 2012.
|
[35]
|
A. Lorz, T. Lorenzi, M. E. Hochberg, J. Clairambault and B. Berthame, Population adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), 377-399.
doi: 10.1051/m2an/2012031.
|
[36]
|
A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil and B. Perthame, Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, Bull. Math. Biol., 77 (2015), 1-22.
doi: 10.1007/s11538-014-0046-4.
|
[37]
|
P. S. Malik, V. Raina and N. André, Metronomics as maintenance treatment in oncology: Time for chemo-switch, Front. Oncol., 10 (2014), 1-7, http://www.ncbi.nlm.nih.gov/pubmed/24782987.
doi: 10.3389/fonc.2014.0007.
|
[38]
|
N. McGranahan and C. Swanton, Biological and therapeutic impact of intratumor heterogeneity in cancer evolution, Cancer Cell, 27 (2015), 15{26, http://www.ncbi.nlm.nih.gov/pubmed/25584892
|
[39]
|
L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules, Cancer Treatment Reports, 61 (1977), 1307-1317.
|
[40]
|
L. Norton and R. Simon, The Norton-Simon hypothesis revisited, Cancer Treatment Reports, 70 (1986), 41-61.
|
[41]
|
E. Pasquier, M. Kavallaris and N. André, Metronomic chemotherapy: New rationale for new directions, Nature Reviews|Clinical Oncology, 7 (2010), 455-465.
doi: 10.1038/nrclinonc.2010.82.
|
[42]
|
K. Pietras and D. Hanahan, A multi-targeted, metronomic and maximum tolerated dose "chemo-switch" regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer, J. of Clinical Oncology, 23 (2005), 939-952.
|
[43]
|
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Macmillan, New York, 1964.
|
[44]
|
H. Schättler and U. Ledzewicz,
Geometric Optimal Control: Theory, Methods and Examples, Springer Verlag, 2012.
doi: 10.1007/978-1-4614-3834-2.
|
[45]
|
Schättler and Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies, Springer Publishing Co., New York, USA, 2015.
doi: 10.1007/978-1-4939-2972-6.
|
[46]
|
H. Schättler, U. Ledzewicz and B. Amini, Dynamical properties of a minimally parametrized mathematical model for metronomic chemotherapy, J. of Math. Biol., 72 (2016), 1255-1280.
doi: 10.1007/s00285-015-0907-y.
|
[47]
|
C. Swanton, Cancer evolution: The final frontier of precision medicine? Ann. Oncol., 25 2014), 549-551, http://www.ncbi.nlm.nih.gov/pubmed/24567514.
doi: 10.1093/annonc/mdu005.
|
[48]
|
A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resistance, Nonlinear Analysis, 47 (2000), 375-386.
doi: 10.1016/S0362-546X(01)00184-5.
|
[49]
|
S. Wang and H. Schättler, Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity, Math. Biosci. and Engr. -MBE, 13 (2016), 1223-1240.
doi: 10.3934/mbe.2016040.
|
[50]
|
J. Wares, J. Crivelli, C. Yun, I. Choi, J. Gevertz and P. Kim, Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections, Math. Biosci. and Engr. -MBE, 12 (2015), 1237-1256.
doi: 10.3934/mbe.2015.12.1237.
|
[51]
|
S. D. Weitman, E. Glatstein and B. A. Kamen, Back to the basics: the importance of concentration × time in oncology, J. of Clinical Oncology, 11 (1993), 820-821.
|