January  2017, 14(1): 263-275. doi: 10.3934/mbe.2017017

Sufficient optimality conditions for a class of epidemic problems with control on the boundary

Faculty of Math and Computer Sciences, University of Lodz, Banacha 22, 90-238 Lodz, Poland

Received  October 22, 2015 Accepted  April 22, 2016 Published  October 2016

In earlier paper of V. Capasso et al it is considered a simply model of controlling an epidemic, which is described by three functionals and systems of two PDE equations having the feedback operator on the boundary. Necessary optimality conditions and two gradient-type algorithms are derived. This paper constructs dual dynamic programming method to derive sufficient optimality conditions for optimal solution as well $\varepsilon $-optimality conditions in terms of dual dynamic inequalities. Approximate optimality and numerical calculations are presented too.

Citation: Miniak-Górecka Alicja, Nowakowski Andrzej. Sufficient optimality conditions for a class of epidemic problems with control on the boundary. Mathematical Biosciences & Engineering, 2017, 14 (1) : 263-275. doi: 10.3934/mbe.2017017
References:
[1]

V. ArnautuV. Barbu and V. Capasso, Controlling the spread of a class of epidemics, Appl. Math. Optim., 20 (1989), 297-317.  doi: 10.1007/BF01447658.  Google Scholar

[2]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces Science+Business Media, Springer 2012. doi: 10.1007/978-94-007-2247-7.  Google Scholar

[3]

V. Capasso, Mathematical Structures of Epidemic Systems Lect. Notes in Biomath., 97 Springer 2008.  Google Scholar

[4]

V. Capasso and K. Kunisch, A reaction-diffusion system arising in modelling man-environment diseases, Quart. Appl. Math., 46 (1988), 431-450.   Google Scholar

[5]

E. Galewska and A. Nowakowski, A dual dynamic programming for multidimensional elliptic optimal control problems, Numer. Funct. Anal. Optim., 27 (2006), 279-289.  doi: 10.1080/01630560600698160.  Google Scholar

[6]

W. Hao and A. Friedman, The LDL-HDL profile determines the risk of atherosclerosis: A mathematical model PLoS ONE 9 (2014), e90497. doi: 10.1371/journal.pone.0090497.  Google Scholar

[7]

A. Miniak-Górecka, Construction of Computational Method for $\varepsilon $-Optimal Solutions Shape Optimization Problems PhD thesis, 2015. Google Scholar

[8]

A. Nowakowski, The dual dynamic programming, Proc. Amer. Math. Soc., 116 (1992), 1089-1096.  doi: 10.1090/S0002-9939-1992-1102860-3.  Google Scholar

[9]

A. Nowakowski, Sufficient optimality conditions for Dirichlet boundary control of wave equations, SIAM J. Control Optim., 47 (2008), 92-110.  doi: 10.1137/050644008.  Google Scholar

[10]

I. Nowakowska and A. Nowakowski, A dual dynamic programming for minimax optimal control problems governed by parabolic equation, Optimization, 60 (2011), 347-363.  doi: 10.1080/02331930903104390.  Google Scholar

[11]

A. Nowakowski and J. Sokołowski, On dual dynamic programming in shape control, Commun. Pure Appl. Anal., 11 (2012), 2473-2485.  doi: 10.3934/cpaa.2012.11.2473.  Google Scholar

show all references

References:
[1]

V. ArnautuV. Barbu and V. Capasso, Controlling the spread of a class of epidemics, Appl. Math. Optim., 20 (1989), 297-317.  doi: 10.1007/BF01447658.  Google Scholar

[2]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces Science+Business Media, Springer 2012. doi: 10.1007/978-94-007-2247-7.  Google Scholar

[3]

V. Capasso, Mathematical Structures of Epidemic Systems Lect. Notes in Biomath., 97 Springer 2008.  Google Scholar

[4]

V. Capasso and K. Kunisch, A reaction-diffusion system arising in modelling man-environment diseases, Quart. Appl. Math., 46 (1988), 431-450.   Google Scholar

[5]

E. Galewska and A. Nowakowski, A dual dynamic programming for multidimensional elliptic optimal control problems, Numer. Funct. Anal. Optim., 27 (2006), 279-289.  doi: 10.1080/01630560600698160.  Google Scholar

[6]

W. Hao and A. Friedman, The LDL-HDL profile determines the risk of atherosclerosis: A mathematical model PLoS ONE 9 (2014), e90497. doi: 10.1371/journal.pone.0090497.  Google Scholar

[7]

A. Miniak-Górecka, Construction of Computational Method for $\varepsilon $-Optimal Solutions Shape Optimization Problems PhD thesis, 2015. Google Scholar

[8]

A. Nowakowski, The dual dynamic programming, Proc. Amer. Math. Soc., 116 (1992), 1089-1096.  doi: 10.1090/S0002-9939-1992-1102860-3.  Google Scholar

[9]

A. Nowakowski, Sufficient optimality conditions for Dirichlet boundary control of wave equations, SIAM J. Control Optim., 47 (2008), 92-110.  doi: 10.1137/050644008.  Google Scholar

[10]

I. Nowakowska and A. Nowakowski, A dual dynamic programming for minimax optimal control problems governed by parabolic equation, Optimization, 60 (2011), 347-363.  doi: 10.1080/02331930903104390.  Google Scholar

[11]

A. Nowakowski and J. Sokołowski, On dual dynamic programming in shape control, Commun. Pure Appl. Anal., 11 (2012), 2473-2485.  doi: 10.3934/cpaa.2012.11.2473.  Google Scholar

[1]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[2]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[3]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[4]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[5]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[6]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[9]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[10]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[11]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[12]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[13]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[14]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[15]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[16]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[17]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[18]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[19]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[20]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (21)
  • HTML views (37)
  • Cited by (0)

Other articles
by authors

[Back to Top]