In earlier paper of V. Capasso et al it is considered a simply model of controlling an epidemic, which is described by three functionals and systems of two PDE equations having the feedback operator on the boundary. Necessary optimality conditions and two gradient-type algorithms are derived. This paper constructs dual dynamic programming method to derive sufficient optimality conditions for optimal solution as well $\varepsilon $-optimality conditions in terms of dual dynamic inequalities. Approximate optimality and numerical calculations are presented too.
Citation: |
[1] |
V. Arnautu, V. Barbu and V. Capasso, Controlling the spread of a class of epidemics, Appl. Math. Optim., 20 (1989), 297-317.
doi: 10.1007/BF01447658.![]() ![]() ![]() |
[2] |
V. Barbu and T. Precupanu,
Convexity and Optimization in Banach Spaces Science+Business Media, Springer 2012.
doi: 10.1007/978-94-007-2247-7.![]() ![]() ![]() |
[3] |
V. Capasso,
Mathematical Structures of Epidemic Systems Lect. Notes in Biomath., 97 Springer 2008.
![]() ![]() |
[4] |
V. Capasso and K. Kunisch, A reaction-diffusion system arising in modelling man-environment diseases, Quart. Appl. Math., 46 (1988), 431-450.
![]() ![]() |
[5] |
E. Galewska and A. Nowakowski, A dual dynamic programming for multidimensional elliptic optimal control problems, Numer. Funct. Anal. Optim., 27 (2006), 279-289.
doi: 10.1080/01630560600698160.![]() ![]() ![]() |
[6] |
W. Hao and A. Friedman, The LDL-HDL profile determines the risk of atherosclerosis: A mathematical model PLoS ONE 9 (2014), e90497.
doi: 10.1371/journal.pone.0090497.![]() ![]() |
[7] |
A. Miniak-Górecka,
Construction of Computational Method for $\varepsilon $-Optimal Solutions Shape Optimization Problems PhD thesis, 2015.
![]() |
[8] |
A. Nowakowski, The dual dynamic programming, Proc. Amer. Math. Soc., 116 (1992), 1089-1096.
doi: 10.1090/S0002-9939-1992-1102860-3.![]() ![]() ![]() |
[9] |
A. Nowakowski, Sufficient optimality conditions for Dirichlet boundary control of wave equations, SIAM J. Control Optim., 47 (2008), 92-110.
doi: 10.1137/050644008.![]() ![]() ![]() |
[10] |
I. Nowakowska and A. Nowakowski, A dual dynamic programming for minimax optimal control problems governed by parabolic equation, Optimization, 60 (2011), 347-363.
doi: 10.1080/02331930903104390.![]() ![]() ![]() |
[11] |
A. Nowakowski and J. Sokołowski, On dual dynamic programming in shape control, Commun. Pure Appl. Anal., 11 (2012), 2473-2485.
doi: 10.3934/cpaa.2012.11.2473.![]() ![]() ![]() |