January  2017, 14(1): 277-287. doi: 10.3934/mbe.2017018

A criterion of collective behavior of bacteria

Institute of Computer Science, Pedagogical University, ul. Podchorazych 2, Krakow 30-084, Poland

* Corresponding author

Received  October 2015 Accepted  February 05, 2016 Published  October 2016

It was established in the previous works that hydrodynamic interactions between the swimmers can lead to collective motion. Its implicit evidences were confirmed by reduction in the effective viscosity. We propose a new quantitative criterion to detect such a collective behavior. Our criterion is based on a new computationally effective RVE (representative volume element) theory based on the basic statistic moments ($e$-sums or generalized Eisenstein-Rayleigh sums). The criterion can be applied to various two-phase dispersed media (biological systems, composites etc). The locations of bacteria are modeled by short segments having a small width randomly embedded in medium without overlapping. We compute the $e$-sums of the simulated disordered sets and of the observed experimental locations of Bacillus subtilis. The obtained results show a difference between these two sets that demonstrates the collective motion of bacteria.

Citation: Roman Czapla, Vladimir V. Mityushev. A criterion of collective behavior of bacteria. Mathematical Biosciences & Engineering, 2017, 14 (1) : 277-287. doi: 10.3934/mbe.2017018
References:
[1]

N. I. Akhiezer, Elements of Theory of Elliptic Functions Nauka, 1970 (in Russian); Engl. transl. AMS, 1990. Google Scholar

[2]

R. CzaplaV. V. Mityushev and W. Nawalaniec, Effective conductivity of random two-dimensional composites with circular non-overlapping inclusions, Computational Materials Science, 63 (2012), 118-126.  doi: 10.1016/j.commatsci.2012.05.058.  Google Scholar

[3]

R. CzaplaV. V. Mityushev and W. Nawalaniec, Simulation of representative volume elements for random 2D composites with circular non-overlapping inclusions, Theoretical and Applied Informatics, 24 (2012), 227-242.   Google Scholar

[4]

R. CzaplaV. V. Mityushev and N. Rylko, Conformal mapping of circular multiply connected domains onto segment domains, Electron. Trans. Numer. Anal., 39 (2012), 286-297.   Google Scholar

[5]

S. GluzmanD. A. Karpeev and L. V. Berlyand, Effective viscosity of puller-like microswimmers: A renormalization approach, J. R. Soc. Interface, 10 (2013), 1-10.  doi: 10.1098/rsif.2013.0720.  Google Scholar

[6]

V. V. Mityushev, Representative cell in mechanics of composites and generalized Eisenstein--Rayleigh sums, Complex Variables, 51 (2006), 1033-1045.  doi: 10.1080/17476930600738576.  Google Scholar

[7]

V. V. Mityushev and P. Adler, Longitudial permeability of a doubly periodic rectangular array of circular cylinders, I, ZAMM (Journal of Applied Mathematics and Mechanics), 82 (2002), 335-345.  doi: 10.1002/1521-4001(200205)82:5<335::AID-ZAMM335>3.0.CO;2-D.  Google Scholar

[8]

V. V. Mityushev and W. Nawalaniec, Basic sums and their random dynamic changes in description of microstructure of 2D composites, Computational Materials Science, 97 (2015), 64-74.  doi: 10.1016/j.commatsci.2014.09.020.  Google Scholar

[9]

V. V. Mityushev and N. Rylko, Optimal distribution of the non-overlapping conducting disks, Multiscale Model. Simul., 10 (2012), 180-190.  doi: 10.1137/110823225.  Google Scholar

[10]

W. Nawalaniec, Algorithms for computing symbolic representations of basic e–sums and their application to composites Journal of Symbolic Computation 74 (2016), 328–345. Google Scholar

[11]

M. Potomkin, V. Gyrya, I. Aranson and L. Berlyand, Collision of microswimmers in viscous fluid Physical Review E 87 (2013), 053005. doi: 10.1103/PhysRevE.87.053005.  Google Scholar

[12]

S. D. RyanL. BerlyandB. M. Haines and D. A. Karpeev, A kinetic model for semi-dilute bacterial suspensions, Multiscale Model. Simul., 11 (2013), 1176-1196.  doi: 10.1137/120900575.  Google Scholar

[13]

S. D. Rayn, B. M. Haines, L. Berlyand, F. Ziebert and I. S. Aranson, Viscosity of bacterial suspensions: Hydrodynamic interactions and self-induced noise Rapid Communication to Phys. Rev. E 83 (2011), 050904(R). doi: 10.1103/PhysRevE.83.050904.  Google Scholar

[14]

S. D. Ryan, A. Sokolov, L. Berlyand and I. S. Aranson, Correlation properties of collective motion in bacterial suspensions New Journal of Physics 15 (2013), 105021, 18pp. doi: 10.1088/1367-2630/15/10/105021.  Google Scholar

[15]

N. Rylko, Representative volume element in 2D for disks and in 3D for balls, J. Mechanics of Materials and Structures, 9 (2014), 427-439.  doi: 10.2140/jomms.2014.9.427.  Google Scholar

[16]

A. Sokolov and I. S. Aranson, Reduction of viscosity in suspension of swimming bacteria Phys. Rev. Lett. 103 (2009), 148101. doi: 10.1103/PhysRevLett.103.148101.  Google Scholar

[17]

A. Sokolov and I. S. Aranson, Physical properties of collective motion in suspensions of bacteria Phys. Rev. Lett. 109 (2012), 248109. doi: 10.1103/PhysRevLett.109.248109.  Google Scholar

[18]

A. Sokolov, I. S. Aranson, J. O. Kessler and R. E. Goldstein, Concentration dependence of the collective dynamics of swimming bacteria Physical Review Letters 98 (2007), 158102. doi: 10.1103/PhysRevLett.98.158102.  Google Scholar

[19]

A. Sokolov, R. E. Goldstein, F. I. Feldstein and I. S. Aranson, Enhanced mixing and spatial instability in concentrated bacteria suspensions, Phys. Rev. E, 80 (2009), 031903. Google Scholar

[20]

M. TournusL. V. BerlyandA. Kirshtein and I. Aranson, Flexibility of bacterial flagella in external shear results in complex swimming trajectories, Journal of the Royal Society Interface, 12 (2015), 1-11.  doi: 10.1098/rsif.2014.0904.  Google Scholar

[21]

A. Weil, Elliptic Functions According to Eisenstein and Kronecker Springer-Verlag, 1976.  Google Scholar

show all references

References:
[1]

N. I. Akhiezer, Elements of Theory of Elliptic Functions Nauka, 1970 (in Russian); Engl. transl. AMS, 1990. Google Scholar

[2]

R. CzaplaV. V. Mityushev and W. Nawalaniec, Effective conductivity of random two-dimensional composites with circular non-overlapping inclusions, Computational Materials Science, 63 (2012), 118-126.  doi: 10.1016/j.commatsci.2012.05.058.  Google Scholar

[3]

R. CzaplaV. V. Mityushev and W. Nawalaniec, Simulation of representative volume elements for random 2D composites with circular non-overlapping inclusions, Theoretical and Applied Informatics, 24 (2012), 227-242.   Google Scholar

[4]

R. CzaplaV. V. Mityushev and N. Rylko, Conformal mapping of circular multiply connected domains onto segment domains, Electron. Trans. Numer. Anal., 39 (2012), 286-297.   Google Scholar

[5]

S. GluzmanD. A. Karpeev and L. V. Berlyand, Effective viscosity of puller-like microswimmers: A renormalization approach, J. R. Soc. Interface, 10 (2013), 1-10.  doi: 10.1098/rsif.2013.0720.  Google Scholar

[6]

V. V. Mityushev, Representative cell in mechanics of composites and generalized Eisenstein--Rayleigh sums, Complex Variables, 51 (2006), 1033-1045.  doi: 10.1080/17476930600738576.  Google Scholar

[7]

V. V. Mityushev and P. Adler, Longitudial permeability of a doubly periodic rectangular array of circular cylinders, I, ZAMM (Journal of Applied Mathematics and Mechanics), 82 (2002), 335-345.  doi: 10.1002/1521-4001(200205)82:5<335::AID-ZAMM335>3.0.CO;2-D.  Google Scholar

[8]

V. V. Mityushev and W. Nawalaniec, Basic sums and their random dynamic changes in description of microstructure of 2D composites, Computational Materials Science, 97 (2015), 64-74.  doi: 10.1016/j.commatsci.2014.09.020.  Google Scholar

[9]

V. V. Mityushev and N. Rylko, Optimal distribution of the non-overlapping conducting disks, Multiscale Model. Simul., 10 (2012), 180-190.  doi: 10.1137/110823225.  Google Scholar

[10]

W. Nawalaniec, Algorithms for computing symbolic representations of basic e–sums and their application to composites Journal of Symbolic Computation 74 (2016), 328–345. Google Scholar

[11]

M. Potomkin, V. Gyrya, I. Aranson and L. Berlyand, Collision of microswimmers in viscous fluid Physical Review E 87 (2013), 053005. doi: 10.1103/PhysRevE.87.053005.  Google Scholar

[12]

S. D. RyanL. BerlyandB. M. Haines and D. A. Karpeev, A kinetic model for semi-dilute bacterial suspensions, Multiscale Model. Simul., 11 (2013), 1176-1196.  doi: 10.1137/120900575.  Google Scholar

[13]

S. D. Rayn, B. M. Haines, L. Berlyand, F. Ziebert and I. S. Aranson, Viscosity of bacterial suspensions: Hydrodynamic interactions and self-induced noise Rapid Communication to Phys. Rev. E 83 (2011), 050904(R). doi: 10.1103/PhysRevE.83.050904.  Google Scholar

[14]

S. D. Ryan, A. Sokolov, L. Berlyand and I. S. Aranson, Correlation properties of collective motion in bacterial suspensions New Journal of Physics 15 (2013), 105021, 18pp. doi: 10.1088/1367-2630/15/10/105021.  Google Scholar

[15]

N. Rylko, Representative volume element in 2D for disks and in 3D for balls, J. Mechanics of Materials and Structures, 9 (2014), 427-439.  doi: 10.2140/jomms.2014.9.427.  Google Scholar

[16]

A. Sokolov and I. S. Aranson, Reduction of viscosity in suspension of swimming bacteria Phys. Rev. Lett. 103 (2009), 148101. doi: 10.1103/PhysRevLett.103.148101.  Google Scholar

[17]

A. Sokolov and I. S. Aranson, Physical properties of collective motion in suspensions of bacteria Phys. Rev. Lett. 109 (2012), 248109. doi: 10.1103/PhysRevLett.109.248109.  Google Scholar

[18]

A. Sokolov, I. S. Aranson, J. O. Kessler and R. E. Goldstein, Concentration dependence of the collective dynamics of swimming bacteria Physical Review Letters 98 (2007), 158102. doi: 10.1103/PhysRevLett.98.158102.  Google Scholar

[19]

A. Sokolov, R. E. Goldstein, F. I. Feldstein and I. S. Aranson, Enhanced mixing and spatial instability in concentrated bacteria suspensions, Phys. Rev. E, 80 (2009), 031903. Google Scholar

[20]

M. TournusL. V. BerlyandA. Kirshtein and I. Aranson, Flexibility of bacterial flagella in external shear results in complex swimming trajectories, Journal of the Royal Society Interface, 12 (2015), 1-11.  doi: 10.1098/rsif.2014.0904.  Google Scholar

[21]

A. Weil, Elliptic Functions According to Eisenstein and Kronecker Springer-Verlag, 1976.  Google Scholar

Figure 1.  Double periodic cell $Q_{(0,0)}$ with segments
Figure 2.  The real (circles) and imaginary (crosses) parts of the averaged directions for $N = 500$ and for the total number of distributions $M = 1500$ ($\varrho = 0.25$). All absolute values do not exceed $0.15$
Figure 3.  $\langle e_{44}\rangle$ for $N = 500$ and for various densities a) $\varrho = 0.15$; b) $\varrho = 0.25$; c) $\varrho = 0.35$. Dashed lines show the deviation bounds $2\%$ (for $ \varrho = 0.15$), $1.5\%$ (for $\varrho = 0.25$) and $1\%$ (for $\varrho = 0.35$)
Figure 4.  Bacillus subtilis [18]
Figure 5.  The values of $e_{44}$ for subsequent frames of the film
Table 1.  The averaged $e$-sums for various densities
$\mathbf{\varrho}$$\mathbf{\mbox{Re}\big[\langle e_{2}\rangle\big]}$$\mathbf{\langle e_{22}\rangle}$$\mathbf{\langle e_{33}\rangle}$$\mathbf{\langle e_{44}\rangle}$
$0.05$$3.12977$$129.053$$-3554.78$$165787.0 $
$0.1$$3.14228$$68.9110$$-926.015$$21743.5 $
$\mathbf{0.15}$$\mathbf{3.13271}$$\mathbf{48.7003}$$\mathbf{-424.611}$$\mathbf{6725.43}$
$0.2$$3.13447$$38.8351$$-251.143$$3037.38 $
$0.25$$3.14641$$33.0394$$-167.170$$1635.55 $
$0.3$$3.13646$$28.9718$$-121.079$$1000.09 $
$ 0.35$$3.14165 $$26.3229$$-93.1703$$672.818$
$0.4$$3.14652$$24.2258$$-73.9405$$472.197 $
$0.45$$3.14838$$22.7573$$-61.2791$$354.635 $
$0.5$$3.14157$$21.4983$$-51.8595$$274.963 $
$0.55$$3.14517$$20.5061$$-44.5169$$218.888 $
$0.6$$3.13946$$19.7609$$-39.4423$$180.827 $
$\mathbf{\varrho}$$\mathbf{\mbox{Re}\big[\langle e_{2}\rangle\big]}$$\mathbf{\langle e_{22}\rangle}$$\mathbf{\langle e_{33}\rangle}$$\mathbf{\langle e_{44}\rangle}$
$0.05$$3.12977$$129.053$$-3554.78$$165787.0 $
$0.1$$3.14228$$68.9110$$-926.015$$21743.5 $
$\mathbf{0.15}$$\mathbf{3.13271}$$\mathbf{48.7003}$$\mathbf{-424.611}$$\mathbf{6725.43}$
$0.2$$3.13447$$38.8351$$-251.143$$3037.38 $
$0.25$$3.14641$$33.0394$$-167.170$$1635.55 $
$0.3$$3.13646$$28.9718$$-121.079$$1000.09 $
$ 0.35$$3.14165 $$26.3229$$-93.1703$$672.818$
$0.4$$3.14652$$24.2258$$-73.9405$$472.197 $
$0.45$$3.14838$$22.7573$$-61.2791$$354.635 $
$0.5$$3.14157$$21.4983$$-51.8595$$274.963 $
$0.55$$3.14517$$20.5061$$-44.5169$$218.888 $
$0.6$$3.13946$$19.7609$$-39.4423$$180.827 $
Table 2.  The $e$-sums for 31 film frames of Bacillus subtilis. The first column contains the number of the film frame, the second column contains the number of bacteria $N$ detected in the frame. The next columns show basic sums
$\mathbf{no.}$$\mathbf N$$\mathbf{\mbox{Re}[ e_2]}$$\mathbf{ e_{22}}$ $\mathbf{ e_{33}}$$\mathbf{ e_{44}}$
$ 1 $$ 2065 $$ 3.24113 $$ 35.3172 $$ -166.312 $$ 2351.56 $
$ 2 $$ 2067 $$ 3.25984 $$ 36.6725 $$ -158.136 $$ 1920.47 $
$ 3 $$ 2066 $$ 3.19667 $$ 34.8162 $$ -164.29 $$ 2071.58 $
$ 4 $$ 2040 $$ 3.29149 $$ 35.4505 $$ -149.94 $$ 2060.21 $
$ 5 $$ 2064 $$ 3.27662 $$ 33.9367 $$ -141.591 $$ 1627.76 $
$ 6 $$ 2056 $$ 3.42917 $$ 37.4054 $$ -190.248 $$ 2867.12 $
$ 7 $$ 2026 $$ 3.34495 $$ 35.6335 $$ -157.051 $$ 1811.85 $
$ 8 $$ 2030 $$ 3.13718 $$ 34.0681 $$ -169.746 $$ 2077.70 $
$ 9 $$ 2039 $$ 3.21947 $$ 34.6973 $$ -148.317 $$ 1675.23 $
$ 10 $$ 2044 $$ 3.06423 $$ 37.2784 $$ -177.122 $$ 2865.54 $
$ 11 $$ 2023 $$ 2.95417 $$ 32.9400 $$ -157.421 $$ 1695.34 $
$ 12 $$ 2014 $$ 3.09097 $$ 36.1141 $$ -208.578 $$ 2967.78 $
$ 13 $$ 2027 $$ 3.00734 $$ 36.0749 $$ -215.528 $$ 3292.64 $
$ 14 $$ 2034 $$ 3.16291 $$ 35.3946 $$ -194.029 $$ 2697.51 $
$ 15 $$ 2059 $$ 3.21142 $$ 35.7572 $$ -175.982 $$ 2647.37 $
$ 16 $$ 2016 $$ 3.19012 $$ 36.9914 $$ -200.469 $$ 3200.68 $
$ 17 $$ 2016 $$ 3.30939 $$ 35.3018 $$ -163.073 $$ 1911.99 $
$ 18 $$ 2057 $$ 3.22744 $$ 38.7036 $$ -243.944 $$ 4057.40$
$ 19 $$ 2055 $$ 3.18527 $$ 35.9201 $$ -144.187 $$ 1701.75 $
$ 20 $$ 2071 $$ 3.31315 $$ 37.6613 $$ -152.177 $$ 2094.90 $
$ 21 $$ 2066 $$ 3.2770 $$ 33.6304 $$ -131.371 $$ 1735.46 $
$ 22 $$ 2073 $$ 3.3854 $$ 35.1252 $$ -129.436 $$ 1330.40 $
$ 23 $$ 2040 $$ 3.24423 $$ 33.6249 $$ -126.809 $$ 1305.79 $
$ 24 $$ 2080 $$ 3.30177 $$ 36.0663 $$ -159.988 $$ 1707.04 $
$ 25 $$ 2077 $$ 3.19037 $$ 34.2243 $$ -168.806 $$ 1970.43 $
$ 26 $$ 2065 $$ 3.39291 $$ 39.0489 $$ -186.748 $$ 2108.54 $
$ 27 $$ 2062 $$ 3.17936 $$ 34.0767 $$ -138.028 $$ 1354.70 $
$ 28 $$ 2024 $$ 3.11102 $$ 40.2420 $$ -202.873 $$ 3966.32 $
$ 29 $$ 2068 $$ 3.12904 $$ 33.4322 $$ -155.213 $$ 1801.78 $
$ 30 $$ 2059 $$ 3.28145 $$ 36.8591 $$ -176.772 $$ 2198.46 $
$ 31 $$ 2042 $$ 3.24301 $$ 37.0932 $$ -208.055 $$ 2844.27 $
$\mathbf{no.}$$\mathbf N$$\mathbf{\mbox{Re}[ e_2]}$$\mathbf{ e_{22}}$ $\mathbf{ e_{33}}$$\mathbf{ e_{44}}$
$ 1 $$ 2065 $$ 3.24113 $$ 35.3172 $$ -166.312 $$ 2351.56 $
$ 2 $$ 2067 $$ 3.25984 $$ 36.6725 $$ -158.136 $$ 1920.47 $
$ 3 $$ 2066 $$ 3.19667 $$ 34.8162 $$ -164.29 $$ 2071.58 $
$ 4 $$ 2040 $$ 3.29149 $$ 35.4505 $$ -149.94 $$ 2060.21 $
$ 5 $$ 2064 $$ 3.27662 $$ 33.9367 $$ -141.591 $$ 1627.76 $
$ 6 $$ 2056 $$ 3.42917 $$ 37.4054 $$ -190.248 $$ 2867.12 $
$ 7 $$ 2026 $$ 3.34495 $$ 35.6335 $$ -157.051 $$ 1811.85 $
$ 8 $$ 2030 $$ 3.13718 $$ 34.0681 $$ -169.746 $$ 2077.70 $
$ 9 $$ 2039 $$ 3.21947 $$ 34.6973 $$ -148.317 $$ 1675.23 $
$ 10 $$ 2044 $$ 3.06423 $$ 37.2784 $$ -177.122 $$ 2865.54 $
$ 11 $$ 2023 $$ 2.95417 $$ 32.9400 $$ -157.421 $$ 1695.34 $
$ 12 $$ 2014 $$ 3.09097 $$ 36.1141 $$ -208.578 $$ 2967.78 $
$ 13 $$ 2027 $$ 3.00734 $$ 36.0749 $$ -215.528 $$ 3292.64 $
$ 14 $$ 2034 $$ 3.16291 $$ 35.3946 $$ -194.029 $$ 2697.51 $
$ 15 $$ 2059 $$ 3.21142 $$ 35.7572 $$ -175.982 $$ 2647.37 $
$ 16 $$ 2016 $$ 3.19012 $$ 36.9914 $$ -200.469 $$ 3200.68 $
$ 17 $$ 2016 $$ 3.30939 $$ 35.3018 $$ -163.073 $$ 1911.99 $
$ 18 $$ 2057 $$ 3.22744 $$ 38.7036 $$ -243.944 $$ 4057.40$
$ 19 $$ 2055 $$ 3.18527 $$ 35.9201 $$ -144.187 $$ 1701.75 $
$ 20 $$ 2071 $$ 3.31315 $$ 37.6613 $$ -152.177 $$ 2094.90 $
$ 21 $$ 2066 $$ 3.2770 $$ 33.6304 $$ -131.371 $$ 1735.46 $
$ 22 $$ 2073 $$ 3.3854 $$ 35.1252 $$ -129.436 $$ 1330.40 $
$ 23 $$ 2040 $$ 3.24423 $$ 33.6249 $$ -126.809 $$ 1305.79 $
$ 24 $$ 2080 $$ 3.30177 $$ 36.0663 $$ -159.988 $$ 1707.04 $
$ 25 $$ 2077 $$ 3.19037 $$ 34.2243 $$ -168.806 $$ 1970.43 $
$ 26 $$ 2065 $$ 3.39291 $$ 39.0489 $$ -186.748 $$ 2108.54 $
$ 27 $$ 2062 $$ 3.17936 $$ 34.0767 $$ -138.028 $$ 1354.70 $
$ 28 $$ 2024 $$ 3.11102 $$ 40.2420 $$ -202.873 $$ 3966.32 $
$ 29 $$ 2068 $$ 3.12904 $$ 33.4322 $$ -155.213 $$ 1801.78 $
$ 30 $$ 2059 $$ 3.28145 $$ 36.8591 $$ -176.772 $$ 2198.46 $
$ 31 $$ 2042 $$ 3.24301 $$ 37.0932 $$ -208.055 $$ 2844.27 $
Table 3.  The $e$-sums calculated for 31 samples of DB sets. The parameters of distribution are $N = 2050$, $\varrho = 0.15$ and $\delta = \frac{l}{4}$
$\mathbf{no.}$$\mathbf{\mbox{Re}[ e_2]}$$\mathbf{ e_{22}}$ $\mathbf{ e_{33}}$$\mathbf{ e_{44}}$
$ 1 $$ 3.17987 $$ 46.6427 $$ -393.453 $$ 6565.85 $
$ 2 $$ 3.07985 $$ 50.6260 $$ -515.407 $$ 9617.15 $
$ 3 $$ 3.36286 $$ 58.2470 $$ -629.653 $$ 11184.9 $
$ 4 $$ 3.31838 $$ 47.8645 $$ -380.243 $$ 5763.63 $
$ 5 $$ 3.01309 $$ 47.7780 $$ -435.587 $$ 6984.50 $
$ 6 $$ 3.14305 $$ 47.8691 $$ -400.298 $$ 6207.25 $
$ 7 $$ 3.20741 $$ 50.5550 $$ -433.739 $$ 6256.86 $
$ 8 $$ 3.20946 $$ 45.6877 $$ -348.511 $$ 4868.42 $
$ 9 $$ 3.08756 $$ 50.2205 $$ -485.495 $$ 8630.89 $
$ 10 $$ 3.14825 $$ 51.9186 $$ -498.135 $$ 7884.83 $
$ 11 $$ 3.15232 $$ 50.4770 $$ -407.538 $$ 5794.05 $
$ 12 $$ 2.97260 $$ 48.3467 $$ -415.332 $$ 6423.79 $
$ 13 $$ 3.18407 $$ 48.6382 $$ -406.544 $$ 6317.61 $
$ 14 $$ 3.12623 $$ 43.5618 $$ -332.846 $$ 5012.32 $
$ 15 $$ 2.96333 $$ 47.0048 $$ -403.513 $$ 6158.98 $
$ 16 $$ 3.13992 $$ 49.2681 $$ -428.006 $$ 6764.48 $
$ 17 $$ 3.16460 $$ 48.0914 $$ -402.791 $$ 6347.72 $
$ 18 $$ 3.09493 $$ 53.3020 $$ -483.722 $$ 7700.97 $
$ 19 $$ 3.12330 $$ 50.4108 $$ -415.444 $$ 6743.15 $
$ 20 $$ 3.21182 $$ 49.3165 $$ -410.478 $$ 6876.66 $
$ 21 $$ 3.21308 $$ 50.4445 $$ -476.521 $$ 8126.50 $
$ 22 $$ 2.97221 $$ 48.6954 $$ -441.899 $$ 7384.68 $
$ 23 $$ 3.23927 $$ 51.1514 $$ -466.984 $$ 6864.76 $
$ 24 $$ 3.11142 $$ 43.8766 $$ -362.591 $$ 5776.80 $
$ 25 $$ 2.84798 $$ 44.1550 $$ -383.563 $$ 5705.14 $
$ 26 $$ 3.09189 $$ 44.8430 $$ -373.888 $$ 6020.28 $
$ 27 $$ 3.11219 $$ 44.5645 $$ -331.345 $$ 4733.94 $
$ 28 $$ 3.05673 $$ 50.1022 $$ -490.807 $$ 8516.17 $
$ 29 $$ 3.09775 $$ 48.5431 $$ -416.398 $$ 6597.56 $
$ 30 $$ 2.99318 $$ 47.1511 $$ -432.571 $$ 6636.21 $
$ 31 $$ 3.01481 $$ 47.5799 $$ -400.869 $$ 6078.16 $
$\mathbf{no.}$$\mathbf{\mbox{Re}[ e_2]}$$\mathbf{ e_{22}}$ $\mathbf{ e_{33}}$$\mathbf{ e_{44}}$
$ 1 $$ 3.17987 $$ 46.6427 $$ -393.453 $$ 6565.85 $
$ 2 $$ 3.07985 $$ 50.6260 $$ -515.407 $$ 9617.15 $
$ 3 $$ 3.36286 $$ 58.2470 $$ -629.653 $$ 11184.9 $
$ 4 $$ 3.31838 $$ 47.8645 $$ -380.243 $$ 5763.63 $
$ 5 $$ 3.01309 $$ 47.7780 $$ -435.587 $$ 6984.50 $
$ 6 $$ 3.14305 $$ 47.8691 $$ -400.298 $$ 6207.25 $
$ 7 $$ 3.20741 $$ 50.5550 $$ -433.739 $$ 6256.86 $
$ 8 $$ 3.20946 $$ 45.6877 $$ -348.511 $$ 4868.42 $
$ 9 $$ 3.08756 $$ 50.2205 $$ -485.495 $$ 8630.89 $
$ 10 $$ 3.14825 $$ 51.9186 $$ -498.135 $$ 7884.83 $
$ 11 $$ 3.15232 $$ 50.4770 $$ -407.538 $$ 5794.05 $
$ 12 $$ 2.97260 $$ 48.3467 $$ -415.332 $$ 6423.79 $
$ 13 $$ 3.18407 $$ 48.6382 $$ -406.544 $$ 6317.61 $
$ 14 $$ 3.12623 $$ 43.5618 $$ -332.846 $$ 5012.32 $
$ 15 $$ 2.96333 $$ 47.0048 $$ -403.513 $$ 6158.98 $
$ 16 $$ 3.13992 $$ 49.2681 $$ -428.006 $$ 6764.48 $
$ 17 $$ 3.16460 $$ 48.0914 $$ -402.791 $$ 6347.72 $
$ 18 $$ 3.09493 $$ 53.3020 $$ -483.722 $$ 7700.97 $
$ 19 $$ 3.12330 $$ 50.4108 $$ -415.444 $$ 6743.15 $
$ 20 $$ 3.21182 $$ 49.3165 $$ -410.478 $$ 6876.66 $
$ 21 $$ 3.21308 $$ 50.4445 $$ -476.521 $$ 8126.50 $
$ 22 $$ 2.97221 $$ 48.6954 $$ -441.899 $$ 7384.68 $
$ 23 $$ 3.23927 $$ 51.1514 $$ -466.984 $$ 6864.76 $
$ 24 $$ 3.11142 $$ 43.8766 $$ -362.591 $$ 5776.80 $
$ 25 $$ 2.84798 $$ 44.1550 $$ -383.563 $$ 5705.14 $
$ 26 $$ 3.09189 $$ 44.8430 $$ -373.888 $$ 6020.28 $
$ 27 $$ 3.11219 $$ 44.5645 $$ -331.345 $$ 4733.94 $
$ 28 $$ 3.05673 $$ 50.1022 $$ -490.807 $$ 8516.17 $
$ 29 $$ 3.09775 $$ 48.5431 $$ -416.398 $$ 6597.56 $
$ 30 $$ 2.99318 $$ 47.1511 $$ -432.571 $$ 6636.21 $
$ 31 $$ 3.01481 $$ 47.5799 $$ -400.869 $$ 6078.16 $
Table 4.  Comparison of the averaged $e$-sums for the observed bacteria locations with the $e$-sums computed for the DB sets $(\varrho = 0.15)$ from Table 2 and Table 3
$\mathbf{\mbox{Re}\big[\langle e_{2}\rangle\big]}$$\mathbf{\langle e_{22}\rangle}$$\mathbf{\langle e_{33}\rangle}$$\mathbf{\langle e_{44}\rangle}$
averaged $e$-sums for theoretical distributions$ 3.11721 $$ 48.6107 $$ -425.941 $$ 6791.75 $
standard deviation of the $e$-sums for theoretical distributions$ 0.107542 $$ 3.02546 $$ 60.3803 $$ 1366.42 $
averaged $e$-sums for distributions of bacteria$ 3.22092$$ 35.7922 $$ -169.75 $$ 2255.47 $
standard deviation of the $e$-sums for distributions of bacteria$ 0.108139 $$ 1.73937 $$ 27.9609 $$ 717.895 $
$\mathbf{\mbox{Re}\big[\langle e_{2}\rangle\big]}$$\mathbf{\langle e_{22}\rangle}$$\mathbf{\langle e_{33}\rangle}$$\mathbf{\langle e_{44}\rangle}$
averaged $e$-sums for theoretical distributions$ 3.11721 $$ 48.6107 $$ -425.941 $$ 6791.75 $
standard deviation of the $e$-sums for theoretical distributions$ 0.107542 $$ 3.02546 $$ 60.3803 $$ 1366.42 $
averaged $e$-sums for distributions of bacteria$ 3.22092$$ 35.7922 $$ -169.75 $$ 2255.47 $
standard deviation of the $e$-sums for distributions of bacteria$ 0.108139 $$ 1.73937 $$ 27.9609 $$ 717.895 $
[1]

Alexander Blokh, Lex Oversteegen, Vladlen Timorin. Non-degenerate locally connected models for plane continua and Julia sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5781-5795. doi: 10.3934/dcds.2017251

[2]

Michael Blank. Emergence of collective behavior in dynamical networks. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 313-329. doi: 10.3934/dcdsb.2013.18.313

[3]

Guang-hui Cai. Strong laws for weighted sums of i.i.d. random variables. Electronic Research Announcements, 2006, 12: 29-36.

[4]

Kelum Gajamannage, Erik M. Bollt. Detecting phase transitions in collective behavior using manifold's curvature. Mathematical Biosciences & Engineering, 2017, 14 (2) : 437-453. doi: 10.3934/mbe.2017027

[5]

Laurent Boudin, Francesco Salvarani. The quasi-invariant limit for a kinetic model of sociological collective behavior. Kinetic & Related Models, 2009, 2 (3) : 433-449. doi: 10.3934/krm.2009.2.433

[6]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[7]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[8]

Alessandro Ferriero, Nicola Fusco. A note on the convex hull of sets of finite perimeter in the plane. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 103-108. doi: 10.3934/dcdsb.2009.11.103

[9]

A.V. Borisov, A.A. Kilin, I.S. Mamaev. Reduction and chaotic behavior of point vortices on a plane and a sphere. Conference Publications, 2005, 2005 (Special) : 100-109. doi: 10.3934/proc.2005.2005.100

[10]

Víctor Jiménez López, Gabriel Soler López. A topological characterization of ω-limit sets for continuous flows on the projective plane. Conference Publications, 2001, 2001 (Special) : 254-258. doi: 10.3934/proc.2001.2001.254

[11]

Luis Barreira, Liviu Horia Popescu, Claudia Valls. Generalized exponential behavior and topological equivalence. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3023-3042. doi: 10.3934/dcdsb.2017161

[12]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[13]

Rich Stankewitz, Toshiyuki Sugawa, Hiroki Sumi. Hereditarily non uniformly perfect sets. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : 2391-2402. doi: 10.3934/dcdss.2019150

[14]

Bendong Lou. Traveling wave solutions of a generalized curvature flow equation in the plane. Conference Publications, 2007, 2007 (Special) : 687-693. doi: 10.3934/proc.2007.2007.687

[15]

Giuseppe Da Prato, Arnaud Debussche. Asymptotic behavior of stochastic PDEs with random coefficients. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1553-1570. doi: 10.3934/dcds.2010.27.1553

[16]

Jing Wang, Feng Xie. On the Rayleigh-Taylor instability for the compressible non-isentropic inviscid fluids with a free interface. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2767-2784. doi: 10.3934/dcdsb.2016072

[17]

Karsten Matthies, George Stone. Derivation of a non-autonomous linear Boltzmann equation from a heterogeneous Rayleigh gas. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3299-3355. doi: 10.3934/dcds.2018143

[18]

Piotr Oprocha, Pawel Wilczynski. Distributional chaos via isolating segments. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 347-356. doi: 10.3934/dcdsb.2007.8.347

[19]

Elena Beretta, Markus Grasmair, Monika Muszkieta, Otmar Scherzer. A variational algorithm for the detection of line segments. Inverse Problems & Imaging, 2014, 8 (2) : 389-408. doi: 10.3934/ipi.2014.8.389

[20]

Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (13)
  • HTML views (3)
  • Cited by (0)

Other articles
by authors

[Back to Top]