[1]

J. P. Alberding, A. L. Baldwin, J. K. Barton and E. Wiley, Effects of pulsation frequency and endothelial integrity on enhanced arterial transmural filtration produced by pulsatile pressure, Am. J. Physiol. Heart Circ. Physiol., 289 (2005), H931H937.
doi: 10.1152/ajpheart.00775.2004.

[2]

A. L. Baldwin, L. M. Wilson, I. GradusPizlo, R. Wilensky and K. March, Effect of atherosclerosis on transmural convection and arterial ultrastructure, JArterioscler. Thromb. Vasc. Biol., 17 (1997), 33653375.

[3]

J. Bennett and C. Dubois, A novel platinum chromium everolimuseluting stent for the treatment of coronary artery disease, Biologics: Targets and Therapy, 17 (2013), 149159.

[4]

P. Biscari, S. Minisini, D. Pierotti, G. Verzini and P. Zunino, Controlled release with finite dissolution rate, SIAM Journal on Applied Mathematics, 71 (2011), 731752.
doi: 10.1137/100790288.

[5]

A. Borghi, E. Foa, R. Balossino, F. Migliavacca and G. Dubini, Modelling drug elution from stents: Effects of reversible binding in the vascular wall and degradable polymeric matrix, Computer Methods in Biomechanics and Biomedical Engineering, 11 (2008), 367377.
doi: 10.1080/10255840801887555.

[6]

F. Bozsak, J. Chomaz and A. I. Barakat, Modeling the transport of drugs eluted from stents: Physical phenomena driving drug distribution in the arterial wall, Biomech Model Mechanobiol, 13 (2014), 327347.
doi: 10.1007/s1023701305464.

[7]

D. Capodanno, F. Dipasqua and C. Tamburino, Novel drugeluting stents in the treatment of de novo coronary lesions, Vasc Health Risk Management, 7 (2011), 103118.

[8]

D. S. Cohen and T. Erneux, Controlled drug release asymptotics, SIAM Journal on Applied Mathematics, 58 (1998), 11931204.
doi: 10.1137/S0036139995293269.

[9]

C. Conway, J. P. McGarry and P. E. McHugh, Modelling of atherosclerotic plaque for use in a computational testbed for stent angioplasty, Annals of Biomedical Engineering, 42 (2014), 24252439.
doi: 10.1007/s1043901411074.

[10]

G. Frenning, Theoretical analysis of the release of slowly dissolving drugs from spherical matrix systems, Journal of Controlled Release, 95 (2004), 109117.
doi: 10.1016/j.jconrel.2003.11.010.

[11]

M. J. Lever, J. M. Tarbell and C. G. Caro, The effect of luminal flow in rabbit carotid artery on transmural fluid transport, Experimental Physiology, 77 (1992), 553563.
doi: 10.1113/expphysiol.1992.sp003619.

[12]

A. D. Levin, N. Vukmirovic, C. Hwang and E. R. Edelman, Specific binding to intracellular proteins determines arterial transport properties for rapamycin and paclitaxel, PNAS, 101 (2004), 94639467.
doi: 10.1073/pnas.0400918101.

[13]

M. A. Lovich and E. R. Edelman, Computational simulations of local vascular heparin deposition and distribution, American Journal of Physiology, 271 (1996), H2014H2024.

[14]

D. M. Martin and F. J. Boyle, Drugeluting stents for coronary artery disease: A review, Medical Engineering & Physics, 33 (2011), 148163.

[15]

S. McGinty, A decade of modelling drug release from arterial stents, Mathematical Bioscience, 257 (2014), 8090.
doi: 10.1016/j.mbs.2014.06.016.

[16]

S. McGinty, S. McKee, C. McCormick and M. Wheel, Release mechanism and parameter estimation in drugeluting stent systems: Analytical solutions of drug release and tissue transport, Mathematical Medicine and Bilology, 32 (2015), 163186.
doi: 10.1093/imammb/dqt025.

[17]

S. McGinty, S. McKee, R. M. Wadsworth and C. McCormick, Modelling drugeluting stents, Mathematical Medicine and Bilology, 28 (2011), 129.
doi: 10.1093/imammb/dqq003.

[18]

S. McGinty and G. Pontrelli, A general model of coupled drug release and tissue absorption for drug delivery devices, Journal of Controlled Release, 217 (2015), 327336.
doi: 10.1016/j.jconrel.2015.09.025.

[19]

A. Peddle, T. T. N. Vo and W. Lee, Modelling chemistry and biology after implantation of a drugeluting stent. Part Ⅱ: Cell proliferation, in progress.

[20]

L. E. L. Perkins, K. H. BoekePurkis, Q. Wang, S. K. Stringer and L. A. Coleman, XIENCE V Everolimuseluting coronary stent system: A preclinical assessment, Journal of Interventional Cardiology, 22 (2009), S28S40.
doi: 10.1111/j.15408183.2009.00451.x.

[21]

D. V. Sakharov, L. V. Kalachev and D. C. Rijken, Numerical simulation of local pharmacokinetics of a drug after intravascular delivery with an eluting stent, Journal of Drug Targeting, 10 (2002), 507513.
doi: 10.1080/1061186021000038382.

[22]

R. W. Sirianni, E. Jang, K. M. Miller and W. M. Saltzman, Parameter estimation methodology in a model of hydrophobic drug release from a polymer coating, Journal of Controlled Release, 142 (2010), 474482.
doi: 10.1016/j.jconrel.2009.11.021.

[23]

A. Tedgui and M. J. Lever, Filtration through damaged and undamaged rabbit thoracic aorta, Am. J. Physiol., 247 (1984), H784H791.

[24]

A. R. Tzafriri, A. Groothuis, G. S. Price and E. R. Edelman, Stent elution rate determines drug deposition and receptormediated effects, Journal of Controlled Release, 161 (2012), 918926.
doi: 10.1016/j.jconrel.2012.05.039.

[25]

A. R. Tzafriri, A. D. Levin and E. R. Edelman, Diffusionlimited binding explains binary dose response for local arterial and tumor drug delivery, Cell Proliferation, 42 (2009), 348363.

[26]

T. T. N. Vo, R. Yang, Y. Rochev and M. Meere, A mathematical model for drug delivery, Progress in Industrial Mathematics at ECMI 2010, Mathematics in Industry, 17 (2012), 521528.

[27]

T. T. N. Vo,
Mathematical Analysis of Some Models for Drug Delivery PhD thesis, National University of Ireland Galway, 2012.

[28]

P. Zunino, Multidimensional pharmacokinetic models applied to the design of drugeluting stents, Cardiovascular Engineering, 4 (2004), 181191.
doi: 10.1023/B:CARE.0000031547.39178.cb.
