
-
Previous Article
A note on the global properties of an age-structured viral dynamic model with multiple target cell populations
- MBE Home
- This Issue
-
Next Article
Effects of selection and mutation on epidemiology of X-linked genetic diseases
Mathematical modeling of continuous and intermittent androgen suppression for the treatment of advanced prostate cancer
1. | United Services Automobile Association, 9800 Fredericksburg Rd, San Antonio, TX 78288, USA |
2. | Sam Houston State University, Department of Mathematics and Statistics, Huntsville, TX 77341, USA |
Prostate cancer is one of the most prevalent types of cancer among men. It is stimulated by the androgens, or male sexual hormones, which circulate in the blood and diffuse into the tissue where they stimulate the prostate tumor to grow. One of the most important treatments for advanced prostate cancer has become androgen deprivation therapy (ADT). In this paper we present three different models of ADT for prostate cancer: continuous androgen suppression (CAS), intermittent androgen suppression (IAS), and periodic androgen suppression. Currently, many patients in the U.S. receive CAS therapy of ADT, but many undergo a relapse after several years and experience adverse side effects while receiving treatment. Some clinical studies have introduced various IAS regimens in order to delay the time to relapse, and/or to reduce the economic costs and adverse side effects. We will compute and analyze parameter sensitivity analysis for CAS and IAS which may give insight to plan effective data collection in a future clinical trial. Moreover, a periodic model for IAS is used to develop an analytical formulation for relapse times which then provides information about the sensitivity of relapse to the parameters in our models.
References:
[1] |
P.-A. Abrahamsson,
Potential benefits of intermittent androgen suppression therapy in the treatment of prostate cancer: A systematic review of the literature, European Urology, 57 (2010), 49-59.
doi: 10.1016/j.eururo.2009.07.049. |
[2] |
H. T. Banks, S. Dediu and S. L. Ernstberger,
Sensitivity functions and their uses in inverse problems, J. Inverse Ill-Posed Probl., 15 (2007), 683-708.
doi: 10.1515/jiip.2007.038. |
[3] |
H.T. Banks and D.M. Bortz,
A parameter sensitivity methodology in the context of HIV delay equation models, J. Math. Biol., 50 (2005), 607-625.
doi: 10.1007/s00285-004-0299-x. |
[4] |
N. C. Buchan and S. L. Goldenberg,
Intermittent androgen suppression for prostate cancer, Nature Reviews Urology, 7 (2010), 552-560.
doi: 10.1038/nrurol.2010.141. |
[5] |
N. Chitnis, J.M. Hyman and J.M. Chushing,
Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.
doi: 10.1007/s11538-008-9299-0. |
[6] |
R.A. Everett, A.M. Packer and Y. Kuang,
Can mathematical models predict the outcomes of prostate cancer patients undergoing intermittent androgen deprivation therapy?, Biophys. Rev. Lett., 9 (2014), 139-157.
doi: 10.1142/9789814730266_0009. |
[7] |
J. K. Hale, Ordinary Differential Equations, 2nd edition, Krieger Publishing, Malabar FL, 1980. |
[8] |
Y. Hirata, N. Bruchovsky and K. Aihara,
Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer, J. Theor. Biol., 264 (2010), 517-527.
doi: 10.1016/j.jtbi.2010.02.027. |
[9] |
A.M. Ideta, G. Tanaka, T. Takeuchi and K. Aihara,
A mathematical model of intermittent androgen suppression for prostate cancer, J. Nonlinear Sci., 18 (2008), 593-614.
doi: 10.1007/s00332-008-9031-0. |
[10] |
H. Lepor and N.D. Shore,
LHRH agonists for the treatment of prostate cancer: 2012, Reviews in Urology, 14 (2012), 1-12.
|
[11] |
Prostate cancer treatment (PDQ) -Patient Version National Cancer Institute, 2016. Available from: https://www.cancer.gov/types/prostate/patient/prostate-treatment-pdq. |
[12] |
T. Portz, Y. Kuang and J.D. Nagy,
A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy, AIP Advances, 2 (2012), 1-14.
doi: 10.1063/1.3697848. |
[13] |
M.H. Rashid and U.B. Chaudhary,
Intermittent androgen deprivation therapy for prostate cancer, The Oncologist, 9 (2004), 295-301.
doi: 10.1634/theoncologist.9-3-295. |
[14] |
F.G. Rick and A.V. Schally,
Bench-to-bedside development of agonists and antagonists of luteinizing hormone-releasing hormone for treatment of advanced prostate cancer, Urologic Oncology: Seminars and Original Investigations, 33 (2015), 270-274.
doi: 10.1016/j.urolonc.2014.11.006. |
[15] |
A. Sciarra, P.A. Abrahamsson, M. Brausi, M. Galsky, N. Mottet, O. Sartor, T.L.J. Tammela and F.C. da Silva,
Intermittent androgen-depravation therapy in prostate cancer: a critical review focused on phase 3 trials, European Urology, 64 (2013), 722-730.
|
[16] |
L.G. Stanley,
Sensitivity equation methods for parameter dependent elliptic equations, Numer. Funct. Anal. Optim., 22 (2001), 721-748.
doi: 10.1081/NFA-100105315. |
[17] |
Y. Suzuki, D. Sakai, T. Nomura, Y. Hirata and K. Aihara,
A new protocol for intermittent androgen suppresion therapy of prostate cancer with unstable saddle-point dynamics, J. Theor. Biol., 350 (2014), 1-16.
doi: 10.1016/j.jtbi.2014.02.004. |
[18] |
G. Tanaka, K. Tsumoto, S. Tsuji and K. Aihara,
Analysis on a hybrid systems model of intermittent hormonal therapy for prostate cancer, Physica D, 237 (2008), 2616-2627.
doi: 10.1016/j.physd.2008.03.044. |
[19] |
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2nd edition, Springer-Verlag, Berlin, 1996.
doi: 10.1007/978-3-642-61453-8. |
[20] |
L. Voth, The Exploration and Computations of Mathematical Models of Intermittent Treatment for Prostate Cancer, M. S. thesis, Sam Houston University, 2012. |
show all references
References:
[1] |
P.-A. Abrahamsson,
Potential benefits of intermittent androgen suppression therapy in the treatment of prostate cancer: A systematic review of the literature, European Urology, 57 (2010), 49-59.
doi: 10.1016/j.eururo.2009.07.049. |
[2] |
H. T. Banks, S. Dediu and S. L. Ernstberger,
Sensitivity functions and their uses in inverse problems, J. Inverse Ill-Posed Probl., 15 (2007), 683-708.
doi: 10.1515/jiip.2007.038. |
[3] |
H.T. Banks and D.M. Bortz,
A parameter sensitivity methodology in the context of HIV delay equation models, J. Math. Biol., 50 (2005), 607-625.
doi: 10.1007/s00285-004-0299-x. |
[4] |
N. C. Buchan and S. L. Goldenberg,
Intermittent androgen suppression for prostate cancer, Nature Reviews Urology, 7 (2010), 552-560.
doi: 10.1038/nrurol.2010.141. |
[5] |
N. Chitnis, J.M. Hyman and J.M. Chushing,
Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.
doi: 10.1007/s11538-008-9299-0. |
[6] |
R.A. Everett, A.M. Packer and Y. Kuang,
Can mathematical models predict the outcomes of prostate cancer patients undergoing intermittent androgen deprivation therapy?, Biophys. Rev. Lett., 9 (2014), 139-157.
doi: 10.1142/9789814730266_0009. |
[7] |
J. K. Hale, Ordinary Differential Equations, 2nd edition, Krieger Publishing, Malabar FL, 1980. |
[8] |
Y. Hirata, N. Bruchovsky and K. Aihara,
Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer, J. Theor. Biol., 264 (2010), 517-527.
doi: 10.1016/j.jtbi.2010.02.027. |
[9] |
A.M. Ideta, G. Tanaka, T. Takeuchi and K. Aihara,
A mathematical model of intermittent androgen suppression for prostate cancer, J. Nonlinear Sci., 18 (2008), 593-614.
doi: 10.1007/s00332-008-9031-0. |
[10] |
H. Lepor and N.D. Shore,
LHRH agonists for the treatment of prostate cancer: 2012, Reviews in Urology, 14 (2012), 1-12.
|
[11] |
Prostate cancer treatment (PDQ) -Patient Version National Cancer Institute, 2016. Available from: https://www.cancer.gov/types/prostate/patient/prostate-treatment-pdq. |
[12] |
T. Portz, Y. Kuang and J.D. Nagy,
A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy, AIP Advances, 2 (2012), 1-14.
doi: 10.1063/1.3697848. |
[13] |
M.H. Rashid and U.B. Chaudhary,
Intermittent androgen deprivation therapy for prostate cancer, The Oncologist, 9 (2004), 295-301.
doi: 10.1634/theoncologist.9-3-295. |
[14] |
F.G. Rick and A.V. Schally,
Bench-to-bedside development of agonists and antagonists of luteinizing hormone-releasing hormone for treatment of advanced prostate cancer, Urologic Oncology: Seminars and Original Investigations, 33 (2015), 270-274.
doi: 10.1016/j.urolonc.2014.11.006. |
[15] |
A. Sciarra, P.A. Abrahamsson, M. Brausi, M. Galsky, N. Mottet, O. Sartor, T.L.J. Tammela and F.C. da Silva,
Intermittent androgen-depravation therapy in prostate cancer: a critical review focused on phase 3 trials, European Urology, 64 (2013), 722-730.
|
[16] |
L.G. Stanley,
Sensitivity equation methods for parameter dependent elliptic equations, Numer. Funct. Anal. Optim., 22 (2001), 721-748.
doi: 10.1081/NFA-100105315. |
[17] |
Y. Suzuki, D. Sakai, T. Nomura, Y. Hirata and K. Aihara,
A new protocol for intermittent androgen suppresion therapy of prostate cancer with unstable saddle-point dynamics, J. Theor. Biol., 350 (2014), 1-16.
doi: 10.1016/j.jtbi.2014.02.004. |
[18] |
G. Tanaka, K. Tsumoto, S. Tsuji and K. Aihara,
Analysis on a hybrid systems model of intermittent hormonal therapy for prostate cancer, Physica D, 237 (2008), 2616-2627.
doi: 10.1016/j.physd.2008.03.044. |
[19] |
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2nd edition, Springer-Verlag, Berlin, 1996.
doi: 10.1007/978-3-642-61453-8. |
[20] |
L. Voth, The Exploration and Computations of Mathematical Models of Intermittent Treatment for Prostate Cancer, M. S. thesis, Sam Houston University, 2012. |

















Parameter | Variable | Baseline Value | Range |
Normal androgen level | 30 nmol/l | 26.25-33.75 nmol/l | |
Androgen concentration rate | 0.08 days |
0.0425-0.1175 days |
|
Androgen dependent proliferation rate | 0.0204 days |
0.0129-0.0279 days |
|
Androgen dependent apoptosis rate | 0.0076 days |
0.00685-0.00835 days |
|
Androgen independent proliferation rate | 0.0242 days |
0.0216-0.0268 days |
|
Androgen independent apoptosis rate | 0.0168 days |
0.0130-0.0206 days |
|
Maximum mutation rate | 0.00005 days |
1.25-8.75 |
|
AD proliferation half-saturation level | 2 nmol/l | 1.25-2.75 nmol/l | |
AD androgen free apoptosis constant | 8 | 7.25-8.75 | |
AD apoptosis rate half-saturation level | 0.5 nmol/l | 0.275-0.725 nmol/l | |
Minimum PSA concentration | 10 ng/ml | 6.5-13.5 ng/ml | |
Maximum PSA concentration | 15 ng/ml | 11.5-18.5 ng/ml | |
Treatment transition rate | 1100 days |
500-1700 days |
Parameter | Variable | Baseline Value | Range |
Normal androgen level | 30 nmol/l | 26.25-33.75 nmol/l | |
Androgen concentration rate | 0.08 days |
0.0425-0.1175 days |
|
Androgen dependent proliferation rate | 0.0204 days |
0.0129-0.0279 days |
|
Androgen dependent apoptosis rate | 0.0076 days |
0.00685-0.00835 days |
|
Androgen independent proliferation rate | 0.0242 days |
0.0216-0.0268 days |
|
Androgen independent apoptosis rate | 0.0168 days |
0.0130-0.0206 days |
|
Maximum mutation rate | 0.00005 days |
1.25-8.75 |
|
AD proliferation half-saturation level | 2 nmol/l | 1.25-2.75 nmol/l | |
AD androgen free apoptosis constant | 8 | 7.25-8.75 | |
AD apoptosis rate half-saturation level | 0.5 nmol/l | 0.275-0.725 nmol/l | |
Minimum PSA concentration | 10 ng/ml | 6.5-13.5 ng/ml | |
Maximum PSA concentration | 15 ng/ml | 11.5-18.5 ng/ml | |
Treatment transition rate | 1100 days |
500-1700 days |
Parameter | Periodic (ⅰ) | Periodic (ⅱ) | Continuous |
Parameter | Periodic (ⅰ) | Periodic (ⅱ) | Continuous |
[1] |
T.L. Jackson. A mathematical model of prostate tumor growth and androgen-independent relapse. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 187-201. doi: 10.3934/dcdsb.2004.4.187 |
[2] |
Harsh Vardhan Jain, Avner Friedman. Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 945-967. doi: 10.3934/dcdsb.2013.18.945 |
[3] |
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3419-3440. doi: 10.3934/dcdss.2020426 |
[4] |
H.Thomas Banks, Danielle Robbins, Karyn L. Sutton. Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1301-1333. doi: 10.3934/mbe.2013.10.1301 |
[5] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[6] |
Yuanxian Hui, Genghong Lin, Jianshe Yu, Jia Li. A delayed differential equation model for mosquito population suppression with sterile mosquitoes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4659-4676. doi: 10.3934/dcdsb.2020118 |
[7] |
Erica M. Rutter, Yang Kuang. Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1001-1021. doi: 10.3934/dcdsb.2017050 |
[8] |
Tania Biswas, Elisabetta Rocca. Long time dynamics of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2455-2469. doi: 10.3934/dcdsb.2021140 |
[9] |
Caglar S. Aksezer. On the sensitivity of desirability functions for multiresponse optimization. Journal of Industrial and Management Optimization, 2008, 4 (4) : 685-696. doi: 10.3934/jimo.2008.4.685 |
[10] |
Jaroslaw Smieja, Malgorzata Kardynska, Arkadiusz Jamroz. The meaning of sensitivity functions in signaling pathways analysis. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2697-2707. doi: 10.3934/dcdsb.2014.19.2697 |
[11] |
Frédéric Mazenc, Christophe Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control and Related Fields, 2011, 1 (2) : 231-250. doi: 10.3934/mcrf.2011.1.231 |
[12] |
Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160 |
[13] |
Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39 |
[14] |
Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591 |
[15] |
Marzena Dolbniak, Malgorzata Kardynska, Jaroslaw Smieja. Sensitivity of combined chemo-and antiangiogenic therapy results in different models describing cancer growth. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 145-160. doi: 10.3934/dcdsb.2018009 |
[16] |
Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216 |
[17] |
Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275 |
[18] |
Emmanuel N. Barron, Rafal Goebel, Robert R. Jensen. The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1693-1706. doi: 10.3934/dcdsb.2012.17.1693 |
[19] |
Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control and Related Fields, 2022, 12 (1) : 225-243. doi: 10.3934/mcrf.2021019 |
[20] |
P. van den Driessche, Lin Wang, Xingfu Zou. Modeling diseases with latency and relapse. Mathematical Biosciences & Engineering, 2007, 4 (2) : 205-219. doi: 10.3934/mbe.2007.4.205 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]