[1]

P.A. Abrahamsson, Potential benefits of intermittent androgen suppression therapy in the treatment of prostate cancer: A systematic review of the literature, European Urology, 57 (2010), 4959.
doi: 10.1016/j.eururo.2009.07.049.

[2]

H. T. Banks, S. Dediu and S. L. Ernstberger, Sensitivity functions and their uses in inverse problems, J. Inverse IllPosed Probl., 15 (2007), 683708.
doi: 10.1515/jiip.2007.038.

[3]

H.T. Banks and D.M. Bortz, A parameter sensitivity methodology in the context of HIV delay equation models, J. Math. Biol., 50 (2005), 607625.
doi: 10.1007/s002850040299x.

[4]

N. C. Buchan and S. L. Goldenberg, Intermittent androgen suppression for prostate cancer, Nature Reviews Urology, 7 (2010), 552560.
doi: 10.1038/nrurol.2010.141.

[5]

N. Chitnis, J.M. Hyman and J.M. Chushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 12721296.
doi: 10.1007/s1153800892990.

[6]

R.A. Everett, A.M. Packer and Y. Kuang, Can mathematical models predict the outcomes of prostate cancer patients undergoing intermittent androgen deprivation therapy?, Biophys. Rev. Lett., 9 (2014), 139157.
doi: 10.1142/9789814730266_0009.

[7]

J. K. Hale, Ordinary Differential Equations, 2^{nd} edition, Krieger Publishing, Malabar FL, 1980.

[8]

Y. Hirata, N. Bruchovsky and K. Aihara, Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer, J. Theor. Biol., 264 (2010), 517527.
doi: 10.1016/j.jtbi.2010.02.027.

[9]

A.M. Ideta, G. Tanaka, T. Takeuchi and K. Aihara, A mathematical model of intermittent androgen suppression for prostate cancer, J. Nonlinear Sci., 18 (2008), 593614.
doi: 10.1007/s0033200890310.

[10]

H. Lepor and N.D. Shore, LHRH agonists for the treatment of prostate cancer: 2012, Reviews in Urology, 14 (2012), 112.

[11]

Prostate cancer treatment (PDQ) Patient Version National Cancer Institute, 2016. Available from: https://www.cancer.gov/types/prostate/patient/prostatetreatmentpdq.

[12]

T. Portz, Y. Kuang and J.D. Nagy, A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy, AIP Advances, 2 (2012), 114.
doi: 10.1063/1.3697848.

[13]

M.H. Rashid and U.B. Chaudhary, Intermittent androgen deprivation therapy for prostate cancer, The Oncologist, 9 (2004), 295301.
doi: 10.1634/theoncologist.93295.

[14]

F.G. Rick and A.V. Schally, Benchtobedside development of agonists and antagonists of luteinizing hormonereleasing hormone for treatment of advanced prostate cancer, Urologic Oncology: Seminars and Original Investigations, 33 (2015), 270274.
doi: 10.1016/j.urolonc.2014.11.006.

[15]

A. Sciarra, P.A. Abrahamsson, M. Brausi, M. Galsky, N. Mottet, O. Sartor, T.L.J. Tammela and F.C. da Silva, Intermittent androgendepravation therapy in prostate cancer: a critical review focused on phase 3 trials, European Urology, 64 (2013), 722730.

[16]

L.G. Stanley, Sensitivity equation methods for parameter dependent elliptic equations, Numer. Funct. Anal. Optim., 22 (2001), 721748.
doi: 10.1081/NFA100105315.

[17]

Y. Suzuki, D. Sakai, T. Nomura, Y. Hirata and K. Aihara, A new protocol for intermittent androgen suppresion therapy of prostate cancer with unstable saddlepoint dynamics, J. Theor. Biol., 350 (2014), 116.
doi: 10.1016/j.jtbi.2014.02.004.

[18]

G. Tanaka, K. Tsumoto, S. Tsuji and K. Aihara, Analysis on a hybrid systems model of intermittent hormonal therapy for prostate cancer, Physica D, 237 (2008), 26162627.
doi: 10.1016/j.physd.2008.03.044.

[19]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2^{nd} edition, SpringerVerlag, Berlin, 1996.
doi: 10.1007/9783642614538.

[20]

L. Voth, The Exploration and Computations of Mathematical Models of Intermittent Treatment for Prostate Cancer, M. S. thesis, Sam Houston University, 2012.
