• Previous Article
    A proton therapy model using discrete difference equations with an example of treating hepatocellular carcinoma
  • MBE Home
  • This Issue
  • Next Article
    A chaotic bursting-spiking transition in a pancreatic beta-cells system: observation of an interior glucose-induced crisis
August  2017, 14(4): 843-880. doi: 10.3934/mbe.2017046

A two-patch prey-predator model with predator dispersal driven by the predation strength

1. 

Sciences and Mathematics Faculty, College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA

2. 

Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India

3. 

Simon A. Levin Mathematical and Computational Modeling Sciences Center, Arizona State University, Mesa, AZ 85212, USA

* Corresponding author: Yun Kang

Received  August 30, 2016 Accepted  December 25, 2016 Published  February 2017

Fund Project: The first author is partially supported by NSF-DMS(1313312); NSF-IOS/DMS (1558127) and The James S. McDonnell Foundation 21st Century Science Initiative in Studying Complex Systems Scholar Award (UHC Scholar Award 220020472).

Foraging movements of predator play an important role in population dynamics of prey-predator systems, which have been considered as mechanisms that contribute to spatial self-organization of prey and predator. In nature, there are many examples of prey-predator interactions where prey is immobile while predator disperses between patches non-randomly through different factors such as stimuli following the encounter of a prey. In this work, we formulate a Rosenzweig-MacArthur prey-predator two patch model with mobility only in predator and the assumption that predators move towards patches with more concentrated prey-predator interactions. We provide completed local and global analysis of our model. Our analytical results combined with bifurcation diagrams suggest that: (1) dispersal may stabilize or destabilize the coupled system; (2) dispersal may generate multiple interior equilibria that lead to rich bistable dynamics or may destroy interior equilibria that lead to the extinction of predator in one patch or both patches; (3) Under certain conditions, the large dispersal can promote the permanence of the system. In addition, we compare the dynamics of our model to the classic two patch model to obtain a better understanding how different dispersal strategies may have different impacts on the dynamics and spatial patterns.

Citation: Yun Kang, Sourav Kumar Sasmal, Komi Messan. A two-patch prey-predator model with predator dispersal driven by the predation strength. Mathematical Biosciences & Engineering, 2017, 14 (4) : 843-880. doi: 10.3934/mbe.2017046
References:
[1]

L. Aarssen and R. Turkington, Biotic specialization between neighbouring genotypes in lolium perenne and trifolium repens from a permanent pasture, The Journal of Ecology, 73 (1985), 605-614.  doi: 10.2307/2260497.  Google Scholar

[2]

R. F. Alder, Migration alone can produce persistence of host-parasitoid models, The American Naturalist, 141 (1993), 642-650.   Google Scholar

[3]

J. Bascompte and R. V. Solé, Spatially induced bifurcations in single-species population dynamics, Journal of Animal Ecology, 63 (1994), 256-264.  doi: 10.2307/5544.  Google Scholar

[4]

B. M. Bolker and S. W. Pacala, Spatial moment equations for plant competition: Understanding spatial strategies and the advantages of short dispersal, The American Naturalist, 153 (1999), 575-602.  doi: 10.1086/303199.  Google Scholar

[5]

C. J. BolterM. DickeJ. J. Van LoonJ. Visser and M. A. Posthumus, Attraction of colorado potato beetle to herbivore-damaged plants during herbivory and after its termination, Journal of Chemical Ecology, 23 (1997), 1003-1023.  doi: 10.1023/B:JOEC.0000006385.70652.5e.  Google Scholar

[6]

C. Carroll and D. H. Janzen, Ecology of foraging by ants, Annual Review of Ecology and Systematics, 4 (1973), 231-257.  doi: 10.1146/annurev.es.04.110173.001311.  Google Scholar

[7]

A. CasalJ. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Differential and Integral Equations, 7 (1994), 411-439.   Google Scholar

[8]

P. L. Chesson and W. W. Murdoch, Aggregation of risk: Relationships among host-parasitoid models, American Naturalist, 127 (1986), 696-715.  doi: 10.1086/284514.  Google Scholar

[9]

W. C. Chewning, Migratory effects in predator-prey models, Mathematical Biosciences, 23 (1975), 253-262.  doi: 10.1016/0025-5564(75)90039-5.  Google Scholar

[10]

R. Cressman and K. Vlastimil, Two-patch population models with adaptive dispersal: The effects of varying dispersal speeds, Journal of Mathematical Biology, 67 (2013), 329-358.  doi: 10.1007/s00285-012-0548-3.  Google Scholar

[11]

E. Curio, The Ethology of Predation ,Springer-Verlag Berlin Heidelberg, 7 1976. doi: 10.1007/978-3-642-81028-2.  Google Scholar

[12]

M. Doebli, Dispersal and dynamics, Theoretical Population Biology, 47 (1995), 82-106.  doi: 10.1006/tpbi.1995.1004.  Google Scholar

[13]

W. FengB. Rock and J. Hinson, On a new model of two-patch predator-prey system with migration of both species, Journal of Applied Analysis and Computation, 1 (2011), 193-203.   Google Scholar

[14]

J. Ford, The Role of the Trypanosomiases in African Ecology. A Study of the Tsetse Fly Problem, in Oxford University Press, Oxford, 1971. Google Scholar

[15]

A. G. Gatehouse, Permanence and the dynamics of biological systems, Host Finding Behaviour Of Tsetse Flies, (1972), 83-95.   Google Scholar

[16]

S. Ghosh and S. Bhattacharyya, A two-patch prey-predator model with food-gathering activity, Journal of Applied Mathematics and Computing, 37 (2011), 497-521.  doi: 10.1007/s12190-010-0446-z.  Google Scholar

[17]

M. Gillies and T. Wilkes, The range of attraction of single baits for some West African mosquitoes, Bulletin of Entomological Research, 60 (1970), 225-235.  doi: 10.1017/S000748530004075X.  Google Scholar

[18]

M. Gillies and T. Wilkes, The range of attraction of animal baits and carbon dioxide for mosquitoes, Bulletin of Entomological Research, 61 (1972), 389-404.   Google Scholar

[19]

M. Gillies and T. Wilkes, The range of attraction of birds as baits for some west african mosquitoes (diptera, culicidae), Bulletin of Entomological Research, 63 (1974), 573-582.  doi: 10.1017/S0007485300047817.  Google Scholar

[20] I. Hanski, Metapopulation Ecology, Oxford University Press, Oxford, 1999.   Google Scholar
[21] I. A. Hanski and M. E. Gilpin, Metapopulation Biology: Ecology, Genetics, and Evolution, Academic Press, San Diego, 1997.   Google Scholar
[22]

M. Hassell and R. May, Aggregation of predators and insect parasites and its effect on stability, The Journal of Animal Ecology, 43 (1974), 567-594.  doi: 10.2307/3384.  Google Scholar

[23]

M. Hassell and T. Southwood, Foraging strategies of insects, Annual Review of Ecology and Systematics, 9 (1978), 75-98.  doi: 10.1146/annurev.es.09.110178.000451.  Google Scholar

[24]

M. HassellO. MiramontesP. Rohani and R. May, Appropriate formulations for dispersal in spatially structured models: comments on bascompte & Solé, Journal of Animal Ecology, 64 (1995), 662-664.  doi: 10.2307/5808.  Google Scholar

[25]

M. P. HassellH. N. Comins and R. M. May, Spatial structure and chaos in insect population dynamics, Nature, 353 (1991), 255-258.  doi: 10.1038/353255a0.  Google Scholar

[26]

A. Hastings, Can spatial variation along lead to selection for dispersal?, Theoretical Population Biology, 24 (1983), 244-251.   Google Scholar

[27]

A. Hastings, Complex interactions between dispersal and dynamics: Lessons from coupled logistic equations, Ecology, 74 (1993), 1362-1372.  doi: 10.2307/1940066.  Google Scholar

[28]

C. HauzyM. GauduchonF. D. Hulot and M. Loreau, Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities, Journal of Theoretical Biology, 266 (2010), 458-469.  doi: 10.1016/j.jtbi.2010.07.008.  Google Scholar

[29]

R. D. Holt, Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theoretical Population Biology, 28 (1985), 181-208.  doi: 10.1016/0040-5809(85)90027-9.  Google Scholar

[30]

S. HsuS. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.  doi: 10.1137/0132030.  Google Scholar

[31]

S. Hsu, On global stability of a predator-prey system, Mathematical Biosciences, 39 (1978), 1-10.  doi: 10.1016/0025-5564(78)90025-1.  Google Scholar

[32]

Y. Huang and O. Diekmann, Predator migration in response to prey density: What are the consequences?, Journal of Mathematical Biology, 43 (2001), 561-581.  doi: 10.1007/s002850100107.  Google Scholar

[33]

V. Hutson, A theorem on average liapunov functions, Monatshefte für Mathematik, 98 (1984), 267-275.  doi: 10.1007/BF01540776.  Google Scholar

[34]

V. Hutson and K. Schmit, Permanence and the dynamics of biological systems, Mathematical Biosciences, 111 (1992), 1-71.  doi: 10.1016/0025-5564(92)90078-B.  Google Scholar

[35]

V. A. Jansen, Regulation of predator-prey systems through spatial interactions: A possible solution to the paradox of enrichment, Oikos, 74 (1995), 384-390.  doi: 10.2307/3545983.  Google Scholar

[36]

V. A. Jansen, The dynamics of two diffusively coupled predator-prey populations, Theoretical Population Biology, 59 (2001), 119-131.  doi: 10.1006/tpbi.2000.1506.  Google Scholar

[37]

V. A. A. Jansen, Theoretical Aspects of Metapopulation Dynamics, PhD thesis, Ph. D. thesis, Leiden University, The Netherlands, 1994. Google Scholar

[38]

Y. Kang and D. Armbruster, Dispersal effects on a discrete two-patch model for plant-insect interactions, Journal of Theoretical Biology, 268 (2011), 84-97.  doi: 10.1016/j.jtbi.2010.09.033.  Google Scholar

[39]

Y. Kang and C. Castillo-Chavez, Multiscale analysis of compartment models with dispersal, Journal of Biological Dynamics, 6 (2012), 50-79.  doi: 10.1080/17513758.2012.713125.  Google Scholar

[40]

P. Kareiva and G. Odell, Swarms of predators exhibit "prey-taxis" if individual predators use area-restricted search, American Naturalist,, 130 (1987), 233-270.   Google Scholar

[41]

P. KareivaA. Mullen and R. Southwood, Population dynamics in spatially complex environments: Theory and data [and discussion], Philosophical Transactions of the Royal Society of London B: Biological Sciences, 330 (1990), 175-190.  doi: 10.1098/rstb.1990.0191.  Google Scholar

[42]

S. KéfiM. RietkerkM. van Baalen and M. Loreau, Local facilitation, bistability and transitions in arid ecosystems, Theoretical Population Biology, 71 (2007), 367-379.   Google Scholar

[43]

P. KlepacM. G. Neubert and P. van den Driessche, Dispersal delays, predator-prey stability, and the paradox of enrichment, Theoretical Population Biology, 71 (2007), 436-444.  doi: 10.1016/j.tpb.2007.02.002.  Google Scholar

[44]

M. KummelD. Brown and A. Bruder, How the aphids got their spots: Predation drives self-organization of aphid colonies in a patchy habitat, Oikos, 122 (2013), 896-906.  doi: 10.1111/j.1600-0706.2012.20805.x.  Google Scholar

[45]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, Journal of Differential Equations, 197 (2004), 315-348.  doi: 10.1016/j.jde.2003.08.003.  Google Scholar

[46]

I. Lengyel and I. R. Epstein, Diffusion-induced instability in chemically reacting systems: Steady-state multiplicity, oscillation, and chaos, Chaos: An Interdisciplinary Journal of Nonlinear Science, 1 (1991), 69-76.  doi: 10.1063/1.165819.  Google Scholar

[47]

S. A. Levin, Dispersion and population interactions, American Naturalist, 108 (1974), 207-228.  doi: 10.1086/282900.  Google Scholar

[48]

R. Levins, Some demographic and genetic consequences of environmental heterogeneity for biological control, Bulletin of the Entomological Society of America, 15 (1969), 237-240.  doi: 10.1093/besa/15.3.237.  Google Scholar

[49]

Z.-z. LiM. GaoC. HuiX.-z. Han and H. Shi, Impact of predator pursuit and prey evasion on synchrony and spatial patterns in metapopulation, Ecological Modelling, 185 (2005), 245-254.  doi: 10.1016/j.ecolmodel.2004.12.008.  Google Scholar

[50]

X. Liu and L. Chen, Complex dynamics of Holling type Ⅱ Lotka--Volterra predator--prey system with impulsive perturbations on the predator, Chaos, Solitons & Fractals, 16 (2003), 311-320.  doi: 10.1016/S0960-0779(02)00408-3.  Google Scholar

[51]

Y. Liu, The Dynamical Behavior of a Two Patch Predator-Prey Model ,Honor Thesis, from The College of William and Mary, 2010. Google Scholar

[52]

J. H. LoughrinD. A. PotterT. R. Hamilton-Kemp and M. E. Byers, Role of feeding-induced plant volatiles in aggregative behavior of the japanese beetle (coleoptera: Scarabaeidae), Environmental Entomology, 25 (1996), 1188-1191.  doi: 10.1093/ee/25.5.1188.  Google Scholar

[53]

J. Madden, Physiological reactions of Pinus radiata to attack by woodwasp, Sirex noctilio F.(Hymenoptera: Siricidae), Bulletin of Entomological Research, 67 (1977), 405-426.  doi: 10.1017/S0007485300011214.  Google Scholar

[54]

L. Markus, Ⅱ. Asymptotically autonomous differential systems, in Contributions to the Theory of Nonlinear Oscillations (AM-36), Vol. Ⅲ, Princeton University Press, 1956, 17–30. doi: 10.1515/9781400882175-003.  Google Scholar

[55]

R. M. May, Host-parasitoid systems in patchy environments: A phenomenological model, The Journal of Animal Ecology, 47 (1978), 833-844.  doi: 10.2307/3674.  Google Scholar

[56]

R. McMurtrie, Persistence and stability of single-species and prey-predator systems in spatially heterogeneous environments, Mathematical Biosciences, 39 (1978), 11-51.  doi: 10.1016/0025-5564(78)90026-3.  Google Scholar

[57]

T. F. MillerD. J. Mladenoff and M. K. Clayton, Old-growth northern hardwood forests: Spatial autocorrelation and patterns of understory vegetation, Ecological Monographs, 72 (2002), 487-503.   Google Scholar

[58]

W. W. MurdochC. J. BriggsR. M. NisbetW. S. Gurney and A. Stewart-Oaten, Aggregation and stability in metapopulation models, American Naturalist, 140 (1992), 41-58.  doi: 10.1086/285402.  Google Scholar

[59]

M. Pascual, Diffusion-induced chaos in a spatial predator-prey system, Proceedings of the Royal Society of London B: Biological Sciences, 251 (1993), 1-7.  doi: 10.1098/rspb.1993.0001.  Google Scholar

[60]

M. ReesP. J. Grubb and D. Kelly, Quantifying the impact of competition and spatial heterogeneity on the structure and dynamics of a four-species guild of winter annuals, American Naturalist, 147 (1996), 1-32.  doi: 10.1086/285837.  Google Scholar

[61]

M. Rietkerk and J. Van de Koppel, Regular pattern formation in real ecosystems, Trends in Ecology & Evolution, 23 (2008), 169-175.  doi: 10.1016/j.tree.2007.10.013.  Google Scholar

[62]

P. Rohani and G. D. Ruxton, Dispersal and stability in metapopulations, Mathematical Medicine and Biology, 16 (1999), 297-306.  doi: 10.1093/imammb/16.3.297.  Google Scholar

[63]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, American Naturalist, 97 (1963), 209-223.  doi: 10.1086/282272.  Google Scholar

[64]

G. D. Ruxton, Density-dependent migration and stability in a system of linked populations, Bulletin of Mathematical Biology, 58 (1996), 643-660.  doi: 10.1007/BF02459477.  Google Scholar

[65]

L. M. Schoonhoven, Plant recognition by lepidopterous larvae, (1972), 87–99. Google Scholar

[66]

L. M. Schoonhoven, On the variability of chemosensory information, The Host-Plant in Relation to Insect Behaviour and Reproduction, Symp. Biol. Hung., 16 (1976), 261–266. doi: 10.1007/978-1-4613-4274-8_42.  Google Scholar

[67]

L. M. Schoonhoven, Chemosensory systems and feeding behavior in phytophagous insects, (1977), 391–398. Google Scholar

[68]

E. W. SeabloomO. N. BjørnstadB. M. Bolker and O. Reichman, Spatial signature of environmental heterogeneity, dispersal, and competition in successional grasslands, Ecological Monographs, 75 (2005), 199-214.  doi: 10.1890/03-0841.  Google Scholar

[69]

G. Seifert and L. Markus, Contributions to the Theory of Nonlinear Oscillations ,Princeton University Press, 1956. Google Scholar

[70]

Y. ShahakE. GalY. Offir and D. Ben-Yakir, Photoselective shade netting integrated with greenhouse technologies for improved performance of vegetable and ornamental crops, International Workshop on Greenhouse Environmental Control and Crop Production in Semi-Arid Regions, 797 (2008), 75-80.  doi: 10.17660/ActaHortic.2008.797.8.  Google Scholar

[71]

R. V. Solé and J. Bascompte, Self-Organization in Complex Ecosystems ,Princeton University Press, Princeton, 2006. Google Scholar

[72]

A. SoroS. Sundberg and H. Rydin, Species diversity, niche metrics and species associations in harvested and undisturbed bogs, Journal of Vegetation Science, 10 (1999), 549-560.  doi: 10.2307/3237189.  Google Scholar

[73]

H. R. Thieme, Mathematics in Population Biology ,Princeton University Press, 2003.  Google Scholar

[74]

D. Tilman and P. M. Kareiva, Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions ,volume 30, Princeton University Press, 1997. Google Scholar

[75]

J. van de KoppelJ. C. GascoigneG. TheraulazM. RietkerkW. M. Mooij and P. M. Herman, Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems, Science, 322 (2008), 739-742.   Google Scholar

[76]

J. K. Waage, Behavioral Aspects of Foraging in the Parasitoid, Nemeritis Canescens (Grav. ) ,PhD Thesis, from University of London, 1977. Google Scholar

[77]

J. WangJ. Shi and J. Wei, Predator-prey system with strong Allee effect in prey, Journal of Mathematical Biology, 62 (2011), 291-331.  doi: 10.1007/s00285-010-0332-1.  Google Scholar

show all references

References:
[1]

L. Aarssen and R. Turkington, Biotic specialization between neighbouring genotypes in lolium perenne and trifolium repens from a permanent pasture, The Journal of Ecology, 73 (1985), 605-614.  doi: 10.2307/2260497.  Google Scholar

[2]

R. F. Alder, Migration alone can produce persistence of host-parasitoid models, The American Naturalist, 141 (1993), 642-650.   Google Scholar

[3]

J. Bascompte and R. V. Solé, Spatially induced bifurcations in single-species population dynamics, Journal of Animal Ecology, 63 (1994), 256-264.  doi: 10.2307/5544.  Google Scholar

[4]

B. M. Bolker and S. W. Pacala, Spatial moment equations for plant competition: Understanding spatial strategies and the advantages of short dispersal, The American Naturalist, 153 (1999), 575-602.  doi: 10.1086/303199.  Google Scholar

[5]

C. J. BolterM. DickeJ. J. Van LoonJ. Visser and M. A. Posthumus, Attraction of colorado potato beetle to herbivore-damaged plants during herbivory and after its termination, Journal of Chemical Ecology, 23 (1997), 1003-1023.  doi: 10.1023/B:JOEC.0000006385.70652.5e.  Google Scholar

[6]

C. Carroll and D. H. Janzen, Ecology of foraging by ants, Annual Review of Ecology and Systematics, 4 (1973), 231-257.  doi: 10.1146/annurev.es.04.110173.001311.  Google Scholar

[7]

A. CasalJ. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Differential and Integral Equations, 7 (1994), 411-439.   Google Scholar

[8]

P. L. Chesson and W. W. Murdoch, Aggregation of risk: Relationships among host-parasitoid models, American Naturalist, 127 (1986), 696-715.  doi: 10.1086/284514.  Google Scholar

[9]

W. C. Chewning, Migratory effects in predator-prey models, Mathematical Biosciences, 23 (1975), 253-262.  doi: 10.1016/0025-5564(75)90039-5.  Google Scholar

[10]

R. Cressman and K. Vlastimil, Two-patch population models with adaptive dispersal: The effects of varying dispersal speeds, Journal of Mathematical Biology, 67 (2013), 329-358.  doi: 10.1007/s00285-012-0548-3.  Google Scholar

[11]

E. Curio, The Ethology of Predation ,Springer-Verlag Berlin Heidelberg, 7 1976. doi: 10.1007/978-3-642-81028-2.  Google Scholar

[12]

M. Doebli, Dispersal and dynamics, Theoretical Population Biology, 47 (1995), 82-106.  doi: 10.1006/tpbi.1995.1004.  Google Scholar

[13]

W. FengB. Rock and J. Hinson, On a new model of two-patch predator-prey system with migration of both species, Journal of Applied Analysis and Computation, 1 (2011), 193-203.   Google Scholar

[14]

J. Ford, The Role of the Trypanosomiases in African Ecology. A Study of the Tsetse Fly Problem, in Oxford University Press, Oxford, 1971. Google Scholar

[15]

A. G. Gatehouse, Permanence and the dynamics of biological systems, Host Finding Behaviour Of Tsetse Flies, (1972), 83-95.   Google Scholar

[16]

S. Ghosh and S. Bhattacharyya, A two-patch prey-predator model with food-gathering activity, Journal of Applied Mathematics and Computing, 37 (2011), 497-521.  doi: 10.1007/s12190-010-0446-z.  Google Scholar

[17]

M. Gillies and T. Wilkes, The range of attraction of single baits for some West African mosquitoes, Bulletin of Entomological Research, 60 (1970), 225-235.  doi: 10.1017/S000748530004075X.  Google Scholar

[18]

M. Gillies and T. Wilkes, The range of attraction of animal baits and carbon dioxide for mosquitoes, Bulletin of Entomological Research, 61 (1972), 389-404.   Google Scholar

[19]

M. Gillies and T. Wilkes, The range of attraction of birds as baits for some west african mosquitoes (diptera, culicidae), Bulletin of Entomological Research, 63 (1974), 573-582.  doi: 10.1017/S0007485300047817.  Google Scholar

[20] I. Hanski, Metapopulation Ecology, Oxford University Press, Oxford, 1999.   Google Scholar
[21] I. A. Hanski and M. E. Gilpin, Metapopulation Biology: Ecology, Genetics, and Evolution, Academic Press, San Diego, 1997.   Google Scholar
[22]

M. Hassell and R. May, Aggregation of predators and insect parasites and its effect on stability, The Journal of Animal Ecology, 43 (1974), 567-594.  doi: 10.2307/3384.  Google Scholar

[23]

M. Hassell and T. Southwood, Foraging strategies of insects, Annual Review of Ecology and Systematics, 9 (1978), 75-98.  doi: 10.1146/annurev.es.09.110178.000451.  Google Scholar

[24]

M. HassellO. MiramontesP. Rohani and R. May, Appropriate formulations for dispersal in spatially structured models: comments on bascompte & Solé, Journal of Animal Ecology, 64 (1995), 662-664.  doi: 10.2307/5808.  Google Scholar

[25]

M. P. HassellH. N. Comins and R. M. May, Spatial structure and chaos in insect population dynamics, Nature, 353 (1991), 255-258.  doi: 10.1038/353255a0.  Google Scholar

[26]

A. Hastings, Can spatial variation along lead to selection for dispersal?, Theoretical Population Biology, 24 (1983), 244-251.   Google Scholar

[27]

A. Hastings, Complex interactions between dispersal and dynamics: Lessons from coupled logistic equations, Ecology, 74 (1993), 1362-1372.  doi: 10.2307/1940066.  Google Scholar

[28]

C. HauzyM. GauduchonF. D. Hulot and M. Loreau, Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities, Journal of Theoretical Biology, 266 (2010), 458-469.  doi: 10.1016/j.jtbi.2010.07.008.  Google Scholar

[29]

R. D. Holt, Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theoretical Population Biology, 28 (1985), 181-208.  doi: 10.1016/0040-5809(85)90027-9.  Google Scholar

[30]

S. HsuS. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.  doi: 10.1137/0132030.  Google Scholar

[31]

S. Hsu, On global stability of a predator-prey system, Mathematical Biosciences, 39 (1978), 1-10.  doi: 10.1016/0025-5564(78)90025-1.  Google Scholar

[32]

Y. Huang and O. Diekmann, Predator migration in response to prey density: What are the consequences?, Journal of Mathematical Biology, 43 (2001), 561-581.  doi: 10.1007/s002850100107.  Google Scholar

[33]

V. Hutson, A theorem on average liapunov functions, Monatshefte für Mathematik, 98 (1984), 267-275.  doi: 10.1007/BF01540776.  Google Scholar

[34]

V. Hutson and K. Schmit, Permanence and the dynamics of biological systems, Mathematical Biosciences, 111 (1992), 1-71.  doi: 10.1016/0025-5564(92)90078-B.  Google Scholar

[35]

V. A. Jansen, Regulation of predator-prey systems through spatial interactions: A possible solution to the paradox of enrichment, Oikos, 74 (1995), 384-390.  doi: 10.2307/3545983.  Google Scholar

[36]

V. A. Jansen, The dynamics of two diffusively coupled predator-prey populations, Theoretical Population Biology, 59 (2001), 119-131.  doi: 10.1006/tpbi.2000.1506.  Google Scholar

[37]

V. A. A. Jansen, Theoretical Aspects of Metapopulation Dynamics, PhD thesis, Ph. D. thesis, Leiden University, The Netherlands, 1994. Google Scholar

[38]

Y. Kang and D. Armbruster, Dispersal effects on a discrete two-patch model for plant-insect interactions, Journal of Theoretical Biology, 268 (2011), 84-97.  doi: 10.1016/j.jtbi.2010.09.033.  Google Scholar

[39]

Y. Kang and C. Castillo-Chavez, Multiscale analysis of compartment models with dispersal, Journal of Biological Dynamics, 6 (2012), 50-79.  doi: 10.1080/17513758.2012.713125.  Google Scholar

[40]

P. Kareiva and G. Odell, Swarms of predators exhibit "prey-taxis" if individual predators use area-restricted search, American Naturalist,, 130 (1987), 233-270.   Google Scholar

[41]

P. KareivaA. Mullen and R. Southwood, Population dynamics in spatially complex environments: Theory and data [and discussion], Philosophical Transactions of the Royal Society of London B: Biological Sciences, 330 (1990), 175-190.  doi: 10.1098/rstb.1990.0191.  Google Scholar

[42]

S. KéfiM. RietkerkM. van Baalen and M. Loreau, Local facilitation, bistability and transitions in arid ecosystems, Theoretical Population Biology, 71 (2007), 367-379.   Google Scholar

[43]

P. KlepacM. G. Neubert and P. van den Driessche, Dispersal delays, predator-prey stability, and the paradox of enrichment, Theoretical Population Biology, 71 (2007), 436-444.  doi: 10.1016/j.tpb.2007.02.002.  Google Scholar

[44]

M. KummelD. Brown and A. Bruder, How the aphids got their spots: Predation drives self-organization of aphid colonies in a patchy habitat, Oikos, 122 (2013), 896-906.  doi: 10.1111/j.1600-0706.2012.20805.x.  Google Scholar

[45]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, Journal of Differential Equations, 197 (2004), 315-348.  doi: 10.1016/j.jde.2003.08.003.  Google Scholar

[46]

I. Lengyel and I. R. Epstein, Diffusion-induced instability in chemically reacting systems: Steady-state multiplicity, oscillation, and chaos, Chaos: An Interdisciplinary Journal of Nonlinear Science, 1 (1991), 69-76.  doi: 10.1063/1.165819.  Google Scholar

[47]

S. A. Levin, Dispersion and population interactions, American Naturalist, 108 (1974), 207-228.  doi: 10.1086/282900.  Google Scholar

[48]

R. Levins, Some demographic and genetic consequences of environmental heterogeneity for biological control, Bulletin of the Entomological Society of America, 15 (1969), 237-240.  doi: 10.1093/besa/15.3.237.  Google Scholar

[49]

Z.-z. LiM. GaoC. HuiX.-z. Han and H. Shi, Impact of predator pursuit and prey evasion on synchrony and spatial patterns in metapopulation, Ecological Modelling, 185 (2005), 245-254.  doi: 10.1016/j.ecolmodel.2004.12.008.  Google Scholar

[50]

X. Liu and L. Chen, Complex dynamics of Holling type Ⅱ Lotka--Volterra predator--prey system with impulsive perturbations on the predator, Chaos, Solitons & Fractals, 16 (2003), 311-320.  doi: 10.1016/S0960-0779(02)00408-3.  Google Scholar

[51]

Y. Liu, The Dynamical Behavior of a Two Patch Predator-Prey Model ,Honor Thesis, from The College of William and Mary, 2010. Google Scholar

[52]

J. H. LoughrinD. A. PotterT. R. Hamilton-Kemp and M. E. Byers, Role of feeding-induced plant volatiles in aggregative behavior of the japanese beetle (coleoptera: Scarabaeidae), Environmental Entomology, 25 (1996), 1188-1191.  doi: 10.1093/ee/25.5.1188.  Google Scholar

[53]

J. Madden, Physiological reactions of Pinus radiata to attack by woodwasp, Sirex noctilio F.(Hymenoptera: Siricidae), Bulletin of Entomological Research, 67 (1977), 405-426.  doi: 10.1017/S0007485300011214.  Google Scholar

[54]

L. Markus, Ⅱ. Asymptotically autonomous differential systems, in Contributions to the Theory of Nonlinear Oscillations (AM-36), Vol. Ⅲ, Princeton University Press, 1956, 17–30. doi: 10.1515/9781400882175-003.  Google Scholar

[55]

R. M. May, Host-parasitoid systems in patchy environments: A phenomenological model, The Journal of Animal Ecology, 47 (1978), 833-844.  doi: 10.2307/3674.  Google Scholar

[56]

R. McMurtrie, Persistence and stability of single-species and prey-predator systems in spatially heterogeneous environments, Mathematical Biosciences, 39 (1978), 11-51.  doi: 10.1016/0025-5564(78)90026-3.  Google Scholar

[57]

T. F. MillerD. J. Mladenoff and M. K. Clayton, Old-growth northern hardwood forests: Spatial autocorrelation and patterns of understory vegetation, Ecological Monographs, 72 (2002), 487-503.   Google Scholar

[58]

W. W. MurdochC. J. BriggsR. M. NisbetW. S. Gurney and A. Stewart-Oaten, Aggregation and stability in metapopulation models, American Naturalist, 140 (1992), 41-58.  doi: 10.1086/285402.  Google Scholar

[59]

M. Pascual, Diffusion-induced chaos in a spatial predator-prey system, Proceedings of the Royal Society of London B: Biological Sciences, 251 (1993), 1-7.  doi: 10.1098/rspb.1993.0001.  Google Scholar

[60]

M. ReesP. J. Grubb and D. Kelly, Quantifying the impact of competition and spatial heterogeneity on the structure and dynamics of a four-species guild of winter annuals, American Naturalist, 147 (1996), 1-32.  doi: 10.1086/285837.  Google Scholar

[61]

M. Rietkerk and J. Van de Koppel, Regular pattern formation in real ecosystems, Trends in Ecology & Evolution, 23 (2008), 169-175.  doi: 10.1016/j.tree.2007.10.013.  Google Scholar

[62]

P. Rohani and G. D. Ruxton, Dispersal and stability in metapopulations, Mathematical Medicine and Biology, 16 (1999), 297-306.  doi: 10.1093/imammb/16.3.297.  Google Scholar

[63]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, American Naturalist, 97 (1963), 209-223.  doi: 10.1086/282272.  Google Scholar

[64]

G. D. Ruxton, Density-dependent migration and stability in a system of linked populations, Bulletin of Mathematical Biology, 58 (1996), 643-660.  doi: 10.1007/BF02459477.  Google Scholar

[65]

L. M. Schoonhoven, Plant recognition by lepidopterous larvae, (1972), 87–99. Google Scholar

[66]

L. M. Schoonhoven, On the variability of chemosensory information, The Host-Plant in Relation to Insect Behaviour and Reproduction, Symp. Biol. Hung., 16 (1976), 261–266. doi: 10.1007/978-1-4613-4274-8_42.  Google Scholar

[67]

L. M. Schoonhoven, Chemosensory systems and feeding behavior in phytophagous insects, (1977), 391–398. Google Scholar

[68]

E. W. SeabloomO. N. BjørnstadB. M. Bolker and O. Reichman, Spatial signature of environmental heterogeneity, dispersal, and competition in successional grasslands, Ecological Monographs, 75 (2005), 199-214.  doi: 10.1890/03-0841.  Google Scholar

[69]

G. Seifert and L. Markus, Contributions to the Theory of Nonlinear Oscillations ,Princeton University Press, 1956. Google Scholar

[70]

Y. ShahakE. GalY. Offir and D. Ben-Yakir, Photoselective shade netting integrated with greenhouse technologies for improved performance of vegetable and ornamental crops, International Workshop on Greenhouse Environmental Control and Crop Production in Semi-Arid Regions, 797 (2008), 75-80.  doi: 10.17660/ActaHortic.2008.797.8.  Google Scholar

[71]

R. V. Solé and J. Bascompte, Self-Organization in Complex Ecosystems ,Princeton University Press, Princeton, 2006. Google Scholar

[72]

A. SoroS. Sundberg and H. Rydin, Species diversity, niche metrics and species associations in harvested and undisturbed bogs, Journal of Vegetation Science, 10 (1999), 549-560.  doi: 10.2307/3237189.  Google Scholar

[73]

H. R. Thieme, Mathematics in Population Biology ,Princeton University Press, 2003.  Google Scholar

[74]

D. Tilman and P. M. Kareiva, Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions ,volume 30, Princeton University Press, 1997. Google Scholar

[75]

J. van de KoppelJ. C. GascoigneG. TheraulazM. RietkerkW. M. Mooij and P. M. Herman, Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems, Science, 322 (2008), 739-742.   Google Scholar

[76]

J. K. Waage, Behavioral Aspects of Foraging in the Parasitoid, Nemeritis Canescens (Grav. ) ,PhD Thesis, from University of London, 1977. Google Scholar

[77]

J. WangJ. Shi and J. Wei, Predator-prey system with strong Allee effect in prey, Journal of Mathematical Biology, 62 (2011), 291-331.  doi: 10.1007/s00285-010-0332-1.  Google Scholar

Figure 1.  One and two bifurcation diagrams of Model (4) where $r=1.5$, $d_1=0.2$, $d_2=0.1$, $K_1=5$, $K_2=3$, $a_1=0.25$, and $a_2=0.15$. The left figure (1a) describes how number of interior equilibria changes for different dispersal values $\rho_i, i=1,2$: black regions have three interior equilibria; red regions have two interior equilibria; blue regions have unique interior equilibrium; yellow regions have no interior equilibrium and predator in Patch 2 dies out; white regions have no interior equilibrium and both predator die out. The right figure (1b) describes the number of interior equilibria and their stability when $\rho_2=0.025$ and $\rho_1$ changes from 0 to 0.5 where $y$-axis is the population size of predator at Patch 1: Blue represents the sink; green represents the saddle; and red represents the source
Figure 4.  One dimensional bifurcation diagrams of Model (4) where $r=1.5$, $d_1=0.2$, $d_2=0.1$, $K_1=5$, $K_2=3$ and $a_1=0.25$. The left figure (4a) describes describes the number of interior equilibria and their stability when $\rho_1=0.5$ and $\rho_2$ changes from 0 to 0.05. The right figure (4b) describes the number of interior equilibria and their stability when $\rho_1=0.6$ and $\rho_2$ changes from 0 to 1.8. In both figures, blue represents the sink; green represents the saddle; and red represents the source
Figure 2.  One and two bifurcation diagrams of Model (4) where $r=1.5$, $d_1=0.2$, $d_2=0.1$, $K_1=5$, $K_2=3$, $a_1=0.25$ and $a_2=0.25$. The left figure (2a) describes how number of interior equilibria changes for different dispersal values $\rho_i, i=1,2$: black regions have three interior equilibria; red regions have two interior equilibria; blue regions have unique interior equilibrium; yellow regions have no interior equilibrium and predator in Patch 2 dies out; white regions have no interior equilibrium and both predator die out. The right figure (2b) describes the number of interior equilibria and their stability when $\rho_1=1$ and $\rho_2$ changes from 0 to 2.5 where $y$-axis is the population size of predator at Patch 1: Blue represents the sink; green represents the saddle; and red represents the source
Figure 3.  One and two bifurcation diagrams of Model (4) where $r=1.5$, $d_1=0.2$, $d_2=0.1$, $K_1=5$, $K_2=3$, $a_1=0.35$ and $a_2=0.25$. The left figure (3a) describes how number of interior equilibria changes for different dispersal values $\rho_i, i=1,2$: black regions have three interior equilibria; red regions have two interior equilibria; blue regions have unique interior equilibrium; yellow regions have no interior equilibrium and predator in Patch 2 dies out; white regions have no interior equilibrium and both predator die out. The right figure (3b) describes the number of interior equilibria and their stability when $\rho_1=1$ and $\rho_2$ changes from 0 to 7 where $y$-axis is the population size of predator at Patch 1: Blue represents the sink; green represents the saddle; and red represents the source
Table 1.  The comparison of boundary equilibria between Model (4) and Model (12). LAS refers to the local asymptotical stability, and GAS refers to the global stability
Scenarios Model (4) whose dispersal is driven by the strength of prey-predator interactions Classical Model (12) whose dispersal is driven by the density of predators
$E_{K_10K_20}$ LAS and GAS if $\mu_i>K_i$ for both $i=1,2$. Dispersal has no effects on its stability. GAS if $\mu_i>K_i$ for both $i=1,2$; While LAS if $d_1+d_2+\rho_1+\rho_2>\frac{a_1K_1}{1+K_1}+\frac{a_2K_2}{1+K_2}$ and $\left[ d_1-\frac{a_1K_1}{1+K_1}\right]\left[1-\frac{a_2K_2}{(d_2+\rho_2)(1+K_2)}\right]+\frac{\rho_1}{d_2+\rho_2}\left[ d_2-\frac{a_2K_2}{1+K_2}\right]>0$. Large dispersal may be able to stabilize the equilibrium.
$E_{i2}^b$ ($y_i=0$) LAS if $\frac{K_i-1}{2}<\mu_i<K_i$ and one of the conditions sa, sb, sc, sd in Theorem 3.2 holds. Large dispersal has potential to either stabilize or stabilize the equilibrium. Does not exists
$E_i^b$ ($x_i=0$) Does not exists LAS if $\frac{K_i-1}{2}<\widehat{\mu}_i<K_i$ and $r_j<a_j\hat{\nu}_j^i$. GAS if $\frac{K_i-1}{2}<\widehat{\mu}_i<K_i$ and $\frac{r_j(K_j+1)^2}{4a_jK_j}<\widehat{\nu}_i^j$. Large dispersal of predator in Patch $i$ will either destroy or destabilize the equilibrium while large dispersal of predator in Patch $j$ may stabilize the equilibrium.
Scenarios Model (4) whose dispersal is driven by the strength of prey-predator interactions Classical Model (12) whose dispersal is driven by the density of predators
$E_{K_10K_20}$ LAS and GAS if $\mu_i>K_i$ for both $i=1,2$. Dispersal has no effects on its stability. GAS if $\mu_i>K_i$ for both $i=1,2$; While LAS if $d_1+d_2+\rho_1+\rho_2>\frac{a_1K_1}{1+K_1}+\frac{a_2K_2}{1+K_2}$ and $\left[ d_1-\frac{a_1K_1}{1+K_1}\right]\left[1-\frac{a_2K_2}{(d_2+\rho_2)(1+K_2)}\right]+\frac{\rho_1}{d_2+\rho_2}\left[ d_2-\frac{a_2K_2}{1+K_2}\right]>0$. Large dispersal may be able to stabilize the equilibrium.
$E_{i2}^b$ ($y_i=0$) LAS if $\frac{K_i-1}{2}<\mu_i<K_i$ and one of the conditions sa, sb, sc, sd in Theorem 3.2 holds. Large dispersal has potential to either stabilize or stabilize the equilibrium. Does not exists
$E_i^b$ ($x_i=0$) Does not exists LAS if $\frac{K_i-1}{2}<\widehat{\mu}_i<K_i$ and $r_j<a_j\hat{\nu}_j^i$. GAS if $\frac{K_i-1}{2}<\widehat{\mu}_i<K_i$ and $\frac{r_j(K_j+1)^2}{4a_jK_j}<\widehat{\nu}_i^j$. Large dispersal of predator in Patch $i$ will either destroy or destabilize the equilibrium while large dispersal of predator in Patch $j$ may stabilize the equilibrium.
Table 2.  The comparison of prey persistence and extinction between Model (4) and Model (12)
Scenarios Model (4) whose dispersal is driven by the strength of prey-predator interactions Classical Model (12) whose dispersal is driven by the density of predators
Persistence of prey Always persist, dispersal of predator has no effects One or both prey persist if conditions 4. in Theorem (4.1) holds. Small dispersal of predator in Patch $i$ and large dispersal of predator in Patch $j$ can help the persistence of prey in Patch $i$.
Extinction of prey Never extinct $x_i$ extinct if $\frac{K_j-1}{2}<\widehat{\mu}_j<K_j$ and $\frac{r_i(K_i+1)^2}{4a_iK_i}<\widehat{\nu}_i^j$. Large dispersal of predator in Patch $i$ can promote the extinction of prey in Patch $i$.
Scenarios Model (4) whose dispersal is driven by the strength of prey-predator interactions Classical Model (12) whose dispersal is driven by the density of predators
Persistence of prey Always persist, dispersal of predator has no effects One or both prey persist if conditions 4. in Theorem (4.1) holds. Small dispersal of predator in Patch $i$ and large dispersal of predator in Patch $j$ can help the persistence of prey in Patch $i$.
Extinction of prey Never extinct $x_i$ extinct if $\frac{K_j-1}{2}<\widehat{\mu}_j<K_j$ and $\frac{r_i(K_i+1)^2}{4a_iK_i}<\widehat{\nu}_i^j$. Large dispersal of predator in Patch $i$ can promote the extinction of prey in Patch $i$.
Table 3.  The comparison of predator persistence and extinction between Model (4) and Model (12)
Scenarios Model (4) whose dispersal is driven by the strength of prey-predator interactions Classical Model (12) whose dispersal is driven by the density of predators
Persistence of predator Predator at Patch $j$ is persistent if Conditions in Theorem 3.6 holds. Small dispersal of predator in Patch $j$ can help the persistence of predator in that patch. Dispersal is able to promote the persistence of predator when predator goes extinct in the single patch model. Predators in both patches have the same persistence conditions. They persist if $0<{\mu}_i<K_i$ for $i=1,2$. Dispersal seems to have no effects in the persistence of predator.
Extinction of predator Simulations suggestions (see the yellow regions of Figure (1a) and Figure (3a)) that the large dispersal of predator in Patch $i$ may lead to the its own extinction. Predators in both patches have the same extinction conditions. They go extinct if ${\mu}_i>K_i$ or $\mu_i<0$ for $i=1,2$
Scenarios Model (4) whose dispersal is driven by the strength of prey-predator interactions Classical Model (12) whose dispersal is driven by the density of predators
Persistence of predator Predator at Patch $j$ is persistent if Conditions in Theorem 3.6 holds. Small dispersal of predator in Patch $j$ can help the persistence of predator in that patch. Dispersal is able to promote the persistence of predator when predator goes extinct in the single patch model. Predators in both patches have the same persistence conditions. They persist if $0<{\mu}_i<K_i$ for $i=1,2$. Dispersal seems to have no effects in the persistence of predator.
Extinction of predator Simulations suggestions (see the yellow regions of Figure (1a) and Figure (3a)) that the large dispersal of predator in Patch $i$ may lead to the its own extinction. Predators in both patches have the same extinction conditions. They go extinct if ${\mu}_i>K_i$ or $\mu_i<0$ for $i=1,2$
[1]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[2]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[3]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[4]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[5]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[6]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[7]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[8]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[9]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[10]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[11]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[12]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[13]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[14]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[15]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[16]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[17]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[18]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[19]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[20]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (95)
  • HTML views (59)
  • Cited by (0)

Other articles
by authors

[Back to Top]