\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A tridiagonal patch model of bacteria inhabiting a Nanofabricated landscape

  • * Corresponding author: RSC

    * Corresponding author: RSC 
Abstract / Introduction Full Text(HTML) Figure(1) / Table(1) Related Papers Cited by
  • In this paper we employ a discrete-diffusion modeling framework to examine a system inspired by the nano-ecology experiments on the bacterium Escherichia coli reported upon in Keymer et al. (2006). In these experiments, the bacteria inhabit a linear array of 85" microhabitat patches (MHP's)", linked by comparatively thinner corridors through which bacteria may pass between adjacent MHP's. Each MHP is connected to its own source of nutrient substrate, which flows into the MHP at a rate that can be controlled in the experiment. Logistic dynamics are assumed within each MHP, and nutrient substrate flow determines the prediction of the within MHP dynamics in the absence of bacteria dispersal between patches. Patches where the substrate flow rate is sufficiently high sustain the bacteria in the absence of between patch movement and may be regarded as sources, while those with insufficient substrate flow lead to the extinction of the bacteria in the within patch environment and may be regarded as sinks. We examine the role of dispersal in determining the predictions of the model under source-sink dynamics.

    Mathematics Subject Classification: Primary: 92D25; Secondary: 34D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  (Experiment 1) We illustrate the role of increasing the bacterial self-aggregation parameter $\gamma$ in Experiment 1. Here the value of $\gamma$ is: $(a)$ $0$, $(b)$ $4$, $(c)$ $10$ and $(d)$ $50$.

    Table 1.  (Experiment 2) We display equilibrium values for the model (6) with $7$ MHP's. Values of all parameters except $\beta_{3}$ and $\beta_{5}$ are fixed as in the text. Values for $(\beta_{3},\beta_{5})$ for each experiment are: $(a)$ $(0.3, 0.14)$, $(b)$ $(0.26, 0.18)$, $(c)$ $(0.24, 0.2)$, $(d)$ $(0.2, 0.24)$, $(e)$ $(0.16, 0.28)$, $(f)$ $(0.15, 0.29)$, $(g)$ $(0.14, 0.3)$, $(h)$ $(0.14, 0.39)$.

    Patch Number
    1234567
    a0.00005890.0003310.001870.01340.001390.0002080.0000305
    b0.00005840.0003070.001720.01330.001480.0002190.0000324
    c0.00005300.0002970.001650.01330.001530.0002260.0000333
    d0.00004970.0002780.001540.01330.001640.0002420.0000356
    e0.00004700.0002630.001440.01330.001780.0002590.0000382
    f0.00004630.0002590.001420.01340.001810.0002640.0000389
    g0.00004570.0002560.001400.01340.001850.0002690.0000397
    h0.00004720.0002640.001450.01450.002290.0003260.0000478
     | Show Table
    DownLoad: CSV
  • [1] K.J. Brown and S.S. Lin, On the existence of positive solutions for an eigenvalue problem with an indefinite weight function, Journal of Mathematical Analysis and Applications, 75 (1980), 112-120.  doi: 10.1016/0022-247X(80)90309-1.
    [2] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations Wiley and Sons, Chichester, UK, 2003. doi: 10.1002/0470871296.
    [3] F. CentlerI. Fetzer and M. Thullner, Modeling population patterns of chemotactic bacteria in homogeneous porous media, Journal of Theoretical Biology, 287 (2011), 82-91.  doi: 10.1016/j.jtbi.2011.07.024.
    [4] B. Fiedler and T. Gedeon, A Lyapunov function for tridiagonal competitive-cooperative systems, SIAM Journal on Mathematical Analysis, 30 (1999), 469-478.  doi: 10.1137/S0036141097316147.
    [5] J.K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM Journal on Mathematical Analysis, 20 (1989), 388-395.  doi: 10.1137/0520025.
    [6] J.E. KeymerP. GalajdaC. MuldoonS. Park and R.H. Austin, Bacterial metapopulations in nanofabricated landscapes, Proceedings of the National Academy of Sciences, 103 (2006), 17290-17295.  doi: 10.1073/pnas.0607971103.
    [7] S. Senn and P. Hess, On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions, Mathematische Annalen, 258 (1982), 459-470.  doi: 10.1007/BF01453979.
    [8] J. Smillie, Competitive and cooperative tridiagonal systems of differential equations, SIAM Journal on Mathematical Analysis, 15 (1984), 530-534.  doi: 10.1137/0515040.
    [9] H.R. Thieme, Persistence under relaxed point-dissipativity (with applications to an endemic model), SIAM Journal on Mathematical Analysis, 24 (1993), 407-435.  doi: 10.1137/0524026.
  • 加载中

Figures(1)

Tables(1)

SHARE

Article Metrics

HTML views(1053) PDF downloads(165) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return