August  2017, 14(4): 953-973. doi: 10.3934/mbe.2017050

A tridiagonal patch model of bacteria inhabiting a Nanofabricated landscape

1. 

Department of Mathematics, The University of Miami, Coral Gables, FL 33124, USA

2. 

Department of Public Health Division of Biostatistics, Miller School of Medicine, The University of Miami, Miami, FL 33136, USA

* Corresponding author: RSC

Received  July 2016 Accepted  January 2017 Published  February 2017

In this paper we employ a discrete-diffusion modeling framework to examine a system inspired by the nano-ecology experiments on the bacterium Escherichia coli reported upon in Keymer et al. (2006). In these experiments, the bacteria inhabit a linear array of 85" microhabitat patches (MHP's)", linked by comparatively thinner corridors through which bacteria may pass between adjacent MHP's. Each MHP is connected to its own source of nutrient substrate, which flows into the MHP at a rate that can be controlled in the experiment. Logistic dynamics are assumed within each MHP, and nutrient substrate flow determines the prediction of the within MHP dynamics in the absence of bacteria dispersal between patches. Patches where the substrate flow rate is sufficiently high sustain the bacteria in the absence of between patch movement and may be regarded as sources, while those with insufficient substrate flow lead to the extinction of the bacteria in the within patch environment and may be regarded as sinks. We examine the role of dispersal in determining the predictions of the model under source-sink dynamics.

Citation: Robert Stephen Cantrell, Brian Coomes, Yifan Sha. A tridiagonal patch model of bacteria inhabiting a Nanofabricated landscape. Mathematical Biosciences & Engineering, 2017, 14 (4) : 953-973. doi: 10.3934/mbe.2017050
References:
[1]

K.J. Brown and S.S. Lin, On the existence of positive solutions for an eigenvalue problem with an indefinite weight function, Journal of Mathematical Analysis and Applications, 75 (1980), 112-120.  doi: 10.1016/0022-247X(80)90309-1.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations Wiley and Sons, Chichester, UK, 2003. doi: 10.1002/0470871296.  Google Scholar

[3]

F. CentlerI. Fetzer and M. Thullner, Modeling population patterns of chemotactic bacteria in homogeneous porous media, Journal of Theoretical Biology, 287 (2011), 82-91.  doi: 10.1016/j.jtbi.2011.07.024.  Google Scholar

[4]

B. Fiedler and T. Gedeon, A Lyapunov function for tridiagonal competitive-cooperative systems, SIAM Journal on Mathematical Analysis, 30 (1999), 469-478.  doi: 10.1137/S0036141097316147.  Google Scholar

[5]

J.K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM Journal on Mathematical Analysis, 20 (1989), 388-395.  doi: 10.1137/0520025.  Google Scholar

[6]

J.E. KeymerP. GalajdaC. MuldoonS. Park and R.H. Austin, Bacterial metapopulations in nanofabricated landscapes, Proceedings of the National Academy of Sciences, 103 (2006), 17290-17295.  doi: 10.1073/pnas.0607971103.  Google Scholar

[7]

S. Senn and P. Hess, On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions, Mathematische Annalen, 258 (1982), 459-470.  doi: 10.1007/BF01453979.  Google Scholar

[8]

J. Smillie, Competitive and cooperative tridiagonal systems of differential equations, SIAM Journal on Mathematical Analysis, 15 (1984), 530-534.  doi: 10.1137/0515040.  Google Scholar

[9]

H.R. Thieme, Persistence under relaxed point-dissipativity (with applications to an endemic model), SIAM Journal on Mathematical Analysis, 24 (1993), 407-435.  doi: 10.1137/0524026.  Google Scholar

show all references

References:
[1]

K.J. Brown and S.S. Lin, On the existence of positive solutions for an eigenvalue problem with an indefinite weight function, Journal of Mathematical Analysis and Applications, 75 (1980), 112-120.  doi: 10.1016/0022-247X(80)90309-1.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations Wiley and Sons, Chichester, UK, 2003. doi: 10.1002/0470871296.  Google Scholar

[3]

F. CentlerI. Fetzer and M. Thullner, Modeling population patterns of chemotactic bacteria in homogeneous porous media, Journal of Theoretical Biology, 287 (2011), 82-91.  doi: 10.1016/j.jtbi.2011.07.024.  Google Scholar

[4]

B. Fiedler and T. Gedeon, A Lyapunov function for tridiagonal competitive-cooperative systems, SIAM Journal on Mathematical Analysis, 30 (1999), 469-478.  doi: 10.1137/S0036141097316147.  Google Scholar

[5]

J.K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM Journal on Mathematical Analysis, 20 (1989), 388-395.  doi: 10.1137/0520025.  Google Scholar

[6]

J.E. KeymerP. GalajdaC. MuldoonS. Park and R.H. Austin, Bacterial metapopulations in nanofabricated landscapes, Proceedings of the National Academy of Sciences, 103 (2006), 17290-17295.  doi: 10.1073/pnas.0607971103.  Google Scholar

[7]

S. Senn and P. Hess, On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions, Mathematische Annalen, 258 (1982), 459-470.  doi: 10.1007/BF01453979.  Google Scholar

[8]

J. Smillie, Competitive and cooperative tridiagonal systems of differential equations, SIAM Journal on Mathematical Analysis, 15 (1984), 530-534.  doi: 10.1137/0515040.  Google Scholar

[9]

H.R. Thieme, Persistence under relaxed point-dissipativity (with applications to an endemic model), SIAM Journal on Mathematical Analysis, 24 (1993), 407-435.  doi: 10.1137/0524026.  Google Scholar

Figure 1.  (Experiment 1) We illustrate the role of increasing the bacterial self-aggregation parameter $\gamma$ in Experiment 1. Here the value of $\gamma$ is: $(a)$ $0$, $(b)$ $4$, $(c)$ $10$ and $(d)$ $50$.
Table 1.  (Experiment 2) We display equilibrium values for the model (6) with $7$ MHP's. Values of all parameters except $\beta_{3}$ and $\beta_{5}$ are fixed as in the text. Values for $(\beta_{3},\beta_{5})$ for each experiment are: $(a)$ $(0.3, 0.14)$, $(b)$ $(0.26, 0.18)$, $(c)$ $(0.24, 0.2)$, $(d)$ $(0.2, 0.24)$, $(e)$ $(0.16, 0.28)$, $(f)$ $(0.15, 0.29)$, $(g)$ $(0.14, 0.3)$, $(h)$ $(0.14, 0.39)$.
Patch Number
1234567
a0.00005890.0003310.001870.01340.001390.0002080.0000305
b0.00005840.0003070.001720.01330.001480.0002190.0000324
c0.00005300.0002970.001650.01330.001530.0002260.0000333
d0.00004970.0002780.001540.01330.001640.0002420.0000356
e0.00004700.0002630.001440.01330.001780.0002590.0000382
f0.00004630.0002590.001420.01340.001810.0002640.0000389
g0.00004570.0002560.001400.01340.001850.0002690.0000397
h0.00004720.0002640.001450.01450.002290.0003260.0000478
Patch Number
1234567
a0.00005890.0003310.001870.01340.001390.0002080.0000305
b0.00005840.0003070.001720.01330.001480.0002190.0000324
c0.00005300.0002970.001650.01330.001530.0002260.0000333
d0.00004970.0002780.001540.01330.001640.0002420.0000356
e0.00004700.0002630.001440.01330.001780.0002590.0000382
f0.00004630.0002590.001420.01340.001810.0002640.0000389
g0.00004570.0002560.001400.01340.001850.0002690.0000397
h0.00004720.0002640.001450.01450.002290.0003260.0000478
[1]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[4]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[5]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[6]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[9]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[10]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[11]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[12]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[13]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[14]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[15]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[16]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[17]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[18]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[19]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[20]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (40)
  • HTML views (62)
  • Cited by (0)

[Back to Top]