# American Institute of Mathematical Sciences

August  2017, 14(4): 975-999. doi: 10.3934/mbe.2017051

## Stability analysis on an economic epidemiological model with vaccination

 1 Department of Statistical and Actuarial Sciences, University of Western Ontario, London, N6A 5B7, Canada 2 Department of Mathematics, Trent University, Peterborough, K9L 0G2, Canada

* Corresponding author

Received  October 2015 Accepted  January 2017 Published  February 2017

In this paper, an economic epidemiological model with vaccination is studied. The stability of the endemic steady-state is analyzed and some bifurcation properties of the system are investigated. It is established that the system exhibits saddle-point and period-doubling bifurcations when adult susceptible individuals are vaccinated. Furthermore, it is shown that susceptible individuals also have the tendency of opting for more number of contacts even if the vaccine is inefficacious and thus causes the disease endemic to increase in the long run. Results from sensitivity analysis with specific disease parameters are also presented. Finally, it is shown that the qualitative behaviour of the system is affected by contact levels.

Citation: Wisdom S. Avusuglo, Kenzu Abdella, Wenying Feng. Stability analysis on an economic epidemiological model with vaccination. Mathematical Biosciences & Engineering, 2017, 14 (4) : 975-999. doi: 10.3934/mbe.2017051
##### References:

show all references

##### References:
Graph of utility function. $\phi=1 \text{ and } h=2$
Graph of utility function. $\delta=0.05 \text{ and } \phi=1$
Graph of infection prevalence verses number of contacts. $\delta=\mu=0.05, \nu=0.8, m = 0.6, n = 0.5$
Graph of $pn$ vs $L$
Sensitivity analysis of number of contacts
Simulation of the proportion susceptible, infected, vaccinated babies and number of contacts
The parameter values for the plot of the graphs are given in Table 3. n = 0, µ = 0:05 and ν = 0:1
The parameter values for plot of graphs are given in Table 3. n = 0:6; µ = 0:05 and ν = 0:2
The parameter values for plot of graphs are given in Table 3. n = 0:6; µ = 0:05; ν = 0:1
The parameter values for plot of graphs are given in Table 3. n = 0:6; µ = 0:05; ν = 0:4
Period-doubling bifurcation diagram for a varying number of contacts. The bifurcation parameter is λ.
Period-doubling bifurcation diagram for a fixed number of contacts (c = 8). The bifurcation parameter is λ.
Period-doubling bifurcation diagram for a varying number of contacts. The bifurcation parameter is n.
Parameter values
 Parameters Values Sources $m$ 92.9 % [27] $n$ 0.0 Assumed $\sigma$ 40 % Assumed $\lambda$ 0.09091 per day [24] $\delta$ 0.05 Assumed $\beta$ 0.96 [4] $\phi$ 1 Assumed $\mu$ 0.02755 per year [24] $\nu$ 10 % Assumed
 Parameters Values Sources $m$ 92.9 % [27] $n$ 0.0 Assumed $\sigma$ 40 % Assumed $\lambda$ 0.09091 per day [24] $\delta$ 0.05 Assumed $\beta$ 0.96 [4] $\phi$ 1 Assumed $\mu$ 0.02755 per year [24] $\nu$ 10 % Assumed
Corresponding endemic steady state values for Table 1
 $s^*$ $i^*$ $v^*$ $p$ 0.533 0.266 0.200 0.214
 $s^*$ $i^*$ $v^*$ $p$ 0.533 0.266 0.200 0.214
Fixed parameter values
 Parameters m $\sigma$ $\lambda$ $\delta$ $\beta$ $\phi$ Values 0.8 0.6 0.6 0.05 0.96 3
 Parameters m $\sigma$ $\lambda$ $\delta$ $\beta$ $\phi$ Values 0.8 0.6 0.6 0.05 0.96 3
Parameter values satisfying proposition 3
 Cases Parameters $|\lambda|$ $L<1$ $\nu=0.2$ $|\lambda_{1}|=0.556$ $\mu=0.05$ $|\lambda_{2}|=0.714$ $n=0.6$ $12$ $\nu=0.8$ $|\lambda_{1}|=1.426$ $\mu=0.6$ $|\lambda_{2}|=0.183$ $n=0.7$
 Cases Parameters $|\lambda|$ $L<1$ $\nu=0.2$ $|\lambda_{1}|=0.556$ $\mu=0.05$ $|\lambda_{2}|=0.714$ $n=0.6$ $12$ $\nu=0.8$ $|\lambda_{1}|=1.426$ $\mu=0.6$ $|\lambda_{2}|=0.183$ $n=0.7$
 $s^*$ $i^*$ $v^*$ $c^*$ $p$ 0.19 0.194 0.616 8.80 0.663
 $s^*$ $i^*$ $v^*$ $c^*$ $p$ 0.19 0.194 0.616 8.80 0.663
 $s^*$ $i^*$ $v^*$ $c^*$ $p$ 0.135 0.059 0.807 9.261 0.282
 $s^*$ $i^*$ $v^*$ $c^*$ $p$ 0.135 0.059 0.807 9.261 0.282
Parameter values for bifurcation analysis
 Parameter $\mu$ $\nu$ n m $\sigma$ $\delta$ $\beta$ $\phi$ Value 0.05 0.5 0.6 0.5 0.6 0.05 0.96 3
 Parameter $\mu$ $\nu$ n m $\sigma$ $\delta$ $\beta$ $\phi$ Value 0.05 0.5 0.6 0.5 0.6 0.05 0.96 3
 [1] Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 [2] Jean-Baptiste Burie, Ramsès Djidjou-Demasse, Arnaud Ducrot. Slow convergence to equilibrium for an evolutionary epidemiology integro-differential system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2223-2243. doi: 10.3934/dcdsb.2019225 [3] Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701 [4] Laura Gardini, Iryna Sushko. Preface: Special issue on nonlinear dynamical systems in economic modeling. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : i-iv. doi: 10.3934/dcdsb.2021241 [5] Hongyu He, Naohiro Kato. Equilibrium submanifold for a biological system. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1429-1441. doi: 10.3934/dcdss.2011.4.1429 [6] Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure and Applied Analysis, 2006, 5 (3) : 515-528. doi: 10.3934/cpaa.2006.5.515 [7] Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure and Applied Analysis, 2007, 6 (1) : 69-82. doi: 10.3934/cpaa.2007.6.69 [8] Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations and Control Theory, 2014, 3 (1) : 1-14. doi: 10.3934/eect.2014.3.1 [9] Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285 [10] Kenji Kimura, Yeong-Cheng Liou, David S. Shyu, Jen-Chih Yao. Simultaneous system of vector equilibrium problems. Journal of Industrial and Management Optimization, 2009, 5 (1) : 161-174. doi: 10.3934/jimo.2009.5.161 [11] Cui-Ping Cheng, Ruo-Fan An. Global stability of traveling wave fronts in a two-dimensional lattice dynamical system with global interaction. Electronic Research Archive, 2021, 29 (5) : 3535-3550. doi: 10.3934/era.2021051 [12] Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999 [13] Jianquan Li, Zhien Ma. Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 635-642. doi: 10.3934/dcdsb.2004.4.635 [14] Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643 [15] Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009 [16] Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461 [17] P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692 [18] Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377 [19] Anatoly Neishtadt. On stability loss delay for dynamical bifurcations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 897-909. doi: 10.3934/dcdss.2009.2.897 [20] Chun Liu, Jan-Eric Sulzbach. The Brinkman-Fourier system with ideal gas equilibrium. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 425-462. doi: 10.3934/dcds.2021123

2018 Impact Factor: 1.313