October  2017, 14(5&6): 1187-1213. doi: 10.3934/mbe.2017061

Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

 

Received  March 2016 Accepted  October 2016 Published  May 2017

This paper is concerned with invasion entire solutions of a monostable time periodic Lotka-Volterra competition-diffusion system. We first give the asymptotic behaviors of time periodic traveling wave solutions at infinity by a dynamical approach coupled with the two-sided Laplace transform. According to these asymptotic behaviors, we then obtain some key estimates which are crucial for the construction of an appropriate pair of sub-super solutions. Finally, using the sub-super solutions method and comparison principle, we establish the existence of invasion entire solutions which behave as two periodic traveling fronts with different speeds propagating from both sides of x-axis. In other words, we formulate a new invasion way of the superior species to the inferior one in a time periodic environment.

Citation: Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061
References:
[1]

N. D. AlikakosP. W. Bates and X. Chen, Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Amer. Math. Soc., 351 (1999), 2777-2805. doi: 10.1090/S0002-9947-99-02134-0. Google Scholar

[2]

X. BaoW. T. Li and Z. C. Wang, Time periodic traveling curved fronts in the periodic Lotka-Volterra competition-diffusion system, J. Dynam. Differential Equations, (2015), 1-36. doi: 10.1007/s10884-015-9512-4. Google Scholar

[3]

X. Bao and Z. C. Wang, Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differential Equations, 255 (2013), 2402-2435. doi: 10.1016/j.jde.2013.06.024. Google Scholar

[4]

P. W. Bates and F. Chen, Periodic traveling waves for a nonlocal integro-differential model, Electron. J. Differential Equations, 1999 (1999), 1-19. Google Scholar

[5]

H. Berestycki and F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55 (2002), 949-1032. doi: 10.1002/cpa.3022. Google Scholar

[6]

Z. H. BuZ. C. Wang and N. W. Liu, Asymptotic behavior of pulsating fronts and entire solutions of reaction-advection-diffusion equations in periodic media, Nonlinear Anal. Real World Appl., 28 (2016), 48-71. doi: 10.1016/j.nonrwa.2015.09.006. Google Scholar

[7]

X. Chen and J. S. Guo, Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Differential Equations, 212 (2005), 62-84. doi: 10.1016/j.jde.2004.10.028. Google Scholar

[8]

C. Conley and R. Gardner, An application of the generalized morse index to travelling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343. doi: 10.1512/iumj.1984.33.33018. Google Scholar

[9]

J. Foldes and P. Poláčik, On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry, Discrete Cont. Dynam. Syst. Ser. A., 25 (2009), 133-157. doi: 10.3934/dcds.2009.25.133. Google Scholar

[10]

Y. FukaoY. Morita and H. Ninomiya, Some entire solutions of the Allen-Cahn equation, Taiwanese J. Math., 8 (2004), 15-32. Google Scholar

[11]

R. A. Gardner, Existence and stability of travelling wave solutions of competition models: A degree theoretic approach, J. Differential Equations., 44 (1982), 343-364. doi: 10.1016/0022-0396(82)90001-8. Google Scholar

[12]

J. S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst. Ser. A., 12 (2005), 193-212. doi: 10.3934/dcds.2005.12.193. Google Scholar

[13]

J. S. Guo and C. H. Wu, Entire solutions for a two-component competition system in a lattice, Tohoku Math. J., 62 (2010), 17-28. doi: 10.2748/tmj/1270041024. Google Scholar

[14]

F. Hamel, Qualitative properties of monostable pulsating fronts: Exponential decayed monotonicity, J. Math. Pures Appl., 89 (2008), 355-399. doi: 10.1016/j.matpur.2007.12.005. Google Scholar

[15]

F. Hamel and N. Nadirashvili, Entire solutions of the KPP equation, Comm. Pure Appl. Math., 52 (1999), 1255-1276. doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W. Google Scholar

[16]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $\mathbb R^N$, Arch. Ration. Mech. Anal., 157 (2001), 91-163. doi: 10.1007/PL00004238. Google Scholar

[17]

Y. Hosono, Singular perturbation analysis of travelling waves of diffusive Lotka-Volterra competition models, Numerical and Applied Mathematics, Part Ⅱ (Paris 1988), (1989), 687-692. Google Scholar

[18]

X. Hou and A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008), 2196-2213. doi: 10.1016/j.nonrwa.2007.07.007. Google Scholar

[19]

Y. Kan-On, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363. doi: 10.1137/S0036141093244556. Google Scholar

[20]

Y. Kan-On, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997), 145-164. doi: 10.1016/0362-546X(95)00142-I. Google Scholar

[21]

W. T. LiY. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313. doi: 10.1016/j.nonrwa.2009.07.005. Google Scholar

[22]

W. T. LiZ. C. Wang and J. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differential Equations, 245 (2008), 102-129. doi: 10.1016/j.jde.2008.03.023. Google Scholar

[23]

W. T. LiJ. B. Wang and L. Zhang, Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats, J. Differential Equations, 261 (2016), 2472-2501. doi: 10.1016/j.jde.2016.05.006. Google Scholar

[24]

W. T. LiL. Zhang and G. B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst. Ser. A., 35 (2015), 1531-1560. doi: 10.3934/dcds.2015.35.1531. Google Scholar

[25]

N. W. LiuW. T. Li and Z. C. Wang, Pulsating type entire solutions of monostable reaction-advection-diffusion equations in periodic excitable media, Nonlinear Anal., 75 (2012), 1869-1880. doi: 10.1016/j.na.2011.09.037. Google Scholar

[26]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser, Boston, 1995. Google Scholar

[27]

G. Lv and M. Wang, Traveling wave front in diffusive and competitive Lotka-Volterra system with delays, Nonlinear Anal. Real World Appl., 11 (2010), 1323-1329. doi: 10.1016/j.nonrwa.2009.02.020. Google Scholar

[28]

Y. Morita and H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861. doi: 10.1007/s10884-006-9046-x. Google Scholar

[29]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240. doi: 10.1137/080723715. Google Scholar

[30]

G. Nadin, Traveling fronts in space-time periodic media, J. Math. Pures Appl., 92 (2009), 232-262. doi: 10.1016/j.matpur.2009.04.002. Google Scholar

[31]

G. Nadin, Existence and uniqueness of the solution of a space-time periodic reaction-diffusion equation, J. Differential Equations, 249 (2010), 1288-1304. doi: 10.1016/j.jde.2010.05.007. Google Scholar

[32]

J. NolenM. Rudd and J. Xin, Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dyn. Partial Differ. Equ., 2 (2005), 1-24. doi: 10.4310/DPDE.2005.v2.n1.a1. Google Scholar

[33]

W. Shen, Traveling waves in time periodic lattice differential equations, Nonlinear Anal., 54 (2003), 319-339. doi: 10.1016/S0362-546X(03)00065-8. Google Scholar

[34]

W. J. Sheng and J. B. Wang, Entire solutions of time periodic bistable reaction-advection-diffusion equations in infinite cylinders J. Math. Phys., 56 (2015), 081501, 17 pp. doi: 10.1063/1.4927712. Google Scholar

[35]

Y. J. SunW. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581. doi: 10.1016/j.jde.2011.04.020. Google Scholar

[36]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Ration. Mech. Anal., 73 (1980), 69-77. doi: 10.1007/BF00283257. Google Scholar

[37]

J. H. Vuuren, The existence of traveling plane waves in a general class of competition-diffusion systems, SIMA J. Appl. Math., 55 (1995), 135-148. doi: 10.1093/imamat/55.2.135. Google Scholar

[38]

M. Wang and G. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delays, Nonlinearity, 23 (2010), 1609-1630. doi: 10.1088/0951-7715/23/7/005. Google Scholar

[39]

Z. C. WangW. T. Li and S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361 (2009), 2047-2084. doi: 10.1090/S0002-9947-08-04694-1. Google Scholar

[40]

Z. C. WangW. T. Li and J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420. doi: 10.1137/080727312. Google Scholar

[41]

H. Yagisita, Backward global solutions characterizing annihilation dynamics of travelling fronts, Publ. Res. Inst. Math. Sci., 39 (2003), 117-164. doi: 10.2977/prims/1145476150. Google Scholar

[42]

L. ZhangW. T. Li and S. L. Wu, Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dynam. Differential Equations, 28 (2016), 189-224. doi: 10.1007/s10884-014-9416-8. Google Scholar

[43]

G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011), 627-671. doi: 10.1016/j.matpur.2010.11.005. Google Scholar

[44]

G. Zhao and S. Ruan, Time periodic traveling wave solutions for periodic advection-reaction-diffusion systems, J. Differential Equations, 257 (2014), 1078-1147. doi: 10.1016/j.jde.2014.05.001. Google Scholar

[45]

X. Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1. Google Scholar

show all references

References:
[1]

N. D. AlikakosP. W. Bates and X. Chen, Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Amer. Math. Soc., 351 (1999), 2777-2805. doi: 10.1090/S0002-9947-99-02134-0. Google Scholar

[2]

X. BaoW. T. Li and Z. C. Wang, Time periodic traveling curved fronts in the periodic Lotka-Volterra competition-diffusion system, J. Dynam. Differential Equations, (2015), 1-36. doi: 10.1007/s10884-015-9512-4. Google Scholar

[3]

X. Bao and Z. C. Wang, Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differential Equations, 255 (2013), 2402-2435. doi: 10.1016/j.jde.2013.06.024. Google Scholar

[4]

P. W. Bates and F. Chen, Periodic traveling waves for a nonlocal integro-differential model, Electron. J. Differential Equations, 1999 (1999), 1-19. Google Scholar

[5]

H. Berestycki and F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55 (2002), 949-1032. doi: 10.1002/cpa.3022. Google Scholar

[6]

Z. H. BuZ. C. Wang and N. W. Liu, Asymptotic behavior of pulsating fronts and entire solutions of reaction-advection-diffusion equations in periodic media, Nonlinear Anal. Real World Appl., 28 (2016), 48-71. doi: 10.1016/j.nonrwa.2015.09.006. Google Scholar

[7]

X. Chen and J. S. Guo, Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Differential Equations, 212 (2005), 62-84. doi: 10.1016/j.jde.2004.10.028. Google Scholar

[8]

C. Conley and R. Gardner, An application of the generalized morse index to travelling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343. doi: 10.1512/iumj.1984.33.33018. Google Scholar

[9]

J. Foldes and P. Poláčik, On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry, Discrete Cont. Dynam. Syst. Ser. A., 25 (2009), 133-157. doi: 10.3934/dcds.2009.25.133. Google Scholar

[10]

Y. FukaoY. Morita and H. Ninomiya, Some entire solutions of the Allen-Cahn equation, Taiwanese J. Math., 8 (2004), 15-32. Google Scholar

[11]

R. A. Gardner, Existence and stability of travelling wave solutions of competition models: A degree theoretic approach, J. Differential Equations., 44 (1982), 343-364. doi: 10.1016/0022-0396(82)90001-8. Google Scholar

[12]

J. S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst. Ser. A., 12 (2005), 193-212. doi: 10.3934/dcds.2005.12.193. Google Scholar

[13]

J. S. Guo and C. H. Wu, Entire solutions for a two-component competition system in a lattice, Tohoku Math. J., 62 (2010), 17-28. doi: 10.2748/tmj/1270041024. Google Scholar

[14]

F. Hamel, Qualitative properties of monostable pulsating fronts: Exponential decayed monotonicity, J. Math. Pures Appl., 89 (2008), 355-399. doi: 10.1016/j.matpur.2007.12.005. Google Scholar

[15]

F. Hamel and N. Nadirashvili, Entire solutions of the KPP equation, Comm. Pure Appl. Math., 52 (1999), 1255-1276. doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W. Google Scholar

[16]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $\mathbb R^N$, Arch. Ration. Mech. Anal., 157 (2001), 91-163. doi: 10.1007/PL00004238. Google Scholar

[17]

Y. Hosono, Singular perturbation analysis of travelling waves of diffusive Lotka-Volterra competition models, Numerical and Applied Mathematics, Part Ⅱ (Paris 1988), (1989), 687-692. Google Scholar

[18]

X. Hou and A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008), 2196-2213. doi: 10.1016/j.nonrwa.2007.07.007. Google Scholar

[19]

Y. Kan-On, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363. doi: 10.1137/S0036141093244556. Google Scholar

[20]

Y. Kan-On, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997), 145-164. doi: 10.1016/0362-546X(95)00142-I. Google Scholar

[21]

W. T. LiY. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313. doi: 10.1016/j.nonrwa.2009.07.005. Google Scholar

[22]

W. T. LiZ. C. Wang and J. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differential Equations, 245 (2008), 102-129. doi: 10.1016/j.jde.2008.03.023. Google Scholar

[23]

W. T. LiJ. B. Wang and L. Zhang, Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats, J. Differential Equations, 261 (2016), 2472-2501. doi: 10.1016/j.jde.2016.05.006. Google Scholar

[24]

W. T. LiL. Zhang and G. B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst. Ser. A., 35 (2015), 1531-1560. doi: 10.3934/dcds.2015.35.1531. Google Scholar

[25]

N. W. LiuW. T. Li and Z. C. Wang, Pulsating type entire solutions of monostable reaction-advection-diffusion equations in periodic excitable media, Nonlinear Anal., 75 (2012), 1869-1880. doi: 10.1016/j.na.2011.09.037. Google Scholar

[26]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser, Boston, 1995. Google Scholar

[27]

G. Lv and M. Wang, Traveling wave front in diffusive and competitive Lotka-Volterra system with delays, Nonlinear Anal. Real World Appl., 11 (2010), 1323-1329. doi: 10.1016/j.nonrwa.2009.02.020. Google Scholar

[28]

Y. Morita and H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861. doi: 10.1007/s10884-006-9046-x. Google Scholar

[29]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240. doi: 10.1137/080723715. Google Scholar

[30]

G. Nadin, Traveling fronts in space-time periodic media, J. Math. Pures Appl., 92 (2009), 232-262. doi: 10.1016/j.matpur.2009.04.002. Google Scholar

[31]

G. Nadin, Existence and uniqueness of the solution of a space-time periodic reaction-diffusion equation, J. Differential Equations, 249 (2010), 1288-1304. doi: 10.1016/j.jde.2010.05.007. Google Scholar

[32]

J. NolenM. Rudd and J. Xin, Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dyn. Partial Differ. Equ., 2 (2005), 1-24. doi: 10.4310/DPDE.2005.v2.n1.a1. Google Scholar

[33]

W. Shen, Traveling waves in time periodic lattice differential equations, Nonlinear Anal., 54 (2003), 319-339. doi: 10.1016/S0362-546X(03)00065-8. Google Scholar

[34]

W. J. Sheng and J. B. Wang, Entire solutions of time periodic bistable reaction-advection-diffusion equations in infinite cylinders J. Math. Phys., 56 (2015), 081501, 17 pp. doi: 10.1063/1.4927712. Google Scholar

[35]

Y. J. SunW. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581. doi: 10.1016/j.jde.2011.04.020. Google Scholar

[36]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Ration. Mech. Anal., 73 (1980), 69-77. doi: 10.1007/BF00283257. Google Scholar

[37]

J. H. Vuuren, The existence of traveling plane waves in a general class of competition-diffusion systems, SIMA J. Appl. Math., 55 (1995), 135-148. doi: 10.1093/imamat/55.2.135. Google Scholar

[38]

M. Wang and G. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delays, Nonlinearity, 23 (2010), 1609-1630. doi: 10.1088/0951-7715/23/7/005. Google Scholar

[39]

Z. C. WangW. T. Li and S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361 (2009), 2047-2084. doi: 10.1090/S0002-9947-08-04694-1. Google Scholar

[40]

Z. C. WangW. T. Li and J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420. doi: 10.1137/080727312. Google Scholar

[41]

H. Yagisita, Backward global solutions characterizing annihilation dynamics of travelling fronts, Publ. Res. Inst. Math. Sci., 39 (2003), 117-164. doi: 10.2977/prims/1145476150. Google Scholar

[42]

L. ZhangW. T. Li and S. L. Wu, Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dynam. Differential Equations, 28 (2016), 189-224. doi: 10.1007/s10884-014-9416-8. Google Scholar

[43]

G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011), 627-671. doi: 10.1016/j.matpur.2010.11.005. Google Scholar

[44]

G. Zhao and S. Ruan, Time periodic traveling wave solutions for periodic advection-reaction-diffusion systems, J. Differential Equations, 257 (2014), 1078-1147. doi: 10.1016/j.jde.2014.05.001. Google Scholar

[45]

X. Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1. Google Scholar

[1]

Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178

[2]

Fang-Di Dong, Wan-Tong Li, Jia-Bing Wang. Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6291-6318. doi: 10.3934/dcds.2017272

[3]

Wan-Tong Li, Wen-Bing Xu, Li Zhang. Traveling waves and entire solutions for an epidemic model with asymmetric dispersal. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2483-2512. doi: 10.3934/dcds.2017107

[4]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[5]

Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707

[6]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[7]

Nar Rawal, Wenxian Shen, Aijun Zhang. Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1609-1640. doi: 10.3934/dcds.2015.35.1609

[8]

Xiongxiong Bao, Wenxian Shen, Zhongwei Shen. Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Communications on Pure & Applied Analysis, 2019, 18 (1) : 361-396. doi: 10.3934/cpaa.2019019

[9]

Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011

[10]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[11]

Guangyu Zhao. Multidimensional periodic traveling waves in infinite cylinders. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1025-1045. doi: 10.3934/dcds.2009.24.1025

[12]

Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160

[13]

Wan-Tong Li, Li Zhang, Guo-Bao Zhang. Invasion entire solutions in a competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1531-1560. doi: 10.3934/dcds.2015.35.1531

[14]

Fatih Bayazit, Ulrich Groh, Rainer Nagel. Floquet representations and asymptotic behavior of periodic evolution families. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4795-4810. doi: 10.3934/dcds.2013.33.4795

[15]

Zengji Du, Zhaosheng Feng. Existence and asymptotic behaviors of traveling waves of a modified vector-disease model. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1899-1920. doi: 10.3934/cpaa.2018090

[16]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[17]

Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1503-1521. doi: 10.3934/dcdsb.2018054

[18]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[19]

Bendong Lou. Periodic traveling waves of a mean curvature flow in heterogeneous media. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 231-249. doi: 10.3934/dcds.2009.25.231

[20]

Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (19)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]