[1]
|
R. Albert and A. L. Barabási, Statistical mechanics of complex networks, Reviews of Modern Physics, 74 (2002), 47-97.
doi: 10.1103/RevModPhys.74.47.
|
[2]
|
A. L. Barabási, R. Albert and H. Jeong, Mean-field theory for scale-free random networks, Physica A: Statistical Mechanics and its Applications, 272 (1999), 173-187.
|
[3]
|
A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512.
doi: 10.1126/science.286.5439.509.
|
[4]
|
S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Structure of growing networks with preferential linking, Physical Review Letters, 85 (2000), 4633.
doi: 10.1103/PhysRevLett.85.4633.
|
[5]
|
S. N. Dorogovtsev and J. F. F. Mendes, Scaling properties of scale-free evolving networks: Continuous approach, Physical Review E, 63 (2001), 056125.
doi: 10.1103/PhysRevE.63.056125.
|
[6]
|
S. N. Dorogovtsev and J. F. F. Mendes,
Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford University Press, New York, 2013.
|
[7]
|
P. Erdős and A. Rényi, On the strength of connectedness of a random graph, Acta Mathematica Hungarica, 12 (1961), 261-267.
doi: 10.1007/BF02066689.
|
[8]
|
M. Faloutsos, P. Faloutsos and C. Faloutsos, On power-law relationships of the internet topology, ACM SIGCOMM Computer Communication Review, 29 (1999), 251-262.
doi: 10.1145/316188.316229.
|
[9]
|
M. J. Gagen and J. S. Mattick, Accelerating, hyperaccelerating, and decelerating networks, Physical Review E, 72 (2005), 016123.
doi: 10.1103/PhysRevE.72.016123.
|
[10]
|
T. House and M. J. Keeling, Insights from unifying modern approximations to infections on networks, Journal of The Royal Society Interface, 8 (2011), 67-73.
doi: 10.1098/rsif.2010.0179.
|
[11]
|
M. J. Keeling, The effects of local spatial structure on epidemiological invasions, Proceedings of the Royal Society of London. Series B: Biological Sciences, 266 (1999), 859-867.
doi: 10.1098/rspb.1999.0716.
|
[12]
|
K. T. D. Ken and M. J. Keeling, Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases, Proceedings of the National Academy of Sciences, 99 (2002), 13330-13335.
|
[13]
|
P. L. Krapivsky, S. Redner and F. Leyvraz, Connectivity of growing random networks,
Physical Review Letters, 85 (2000), 4629.
|
[14]
|
P. L. Krapivsky and S. Redner, Organization of growing random networks, Physical Review E, 63 (2001), 066123.
doi: 10.1103/PhysRevE.63.066123.
|
[15]
|
J. Lindquist, J. Ma, P. van den Driessche and F. H. Willeboordse, Effective degree network disease models, Journal of Mathematical Biology, 62 (2011), 143-164.
doi: 10.1007/s00285-010-0331-2.
|
[16]
|
C. Liu, J. Xie, H. Chen, H. Zhang and M. Tang, Interplay between the local information based behavioral responses and the epidemic spreading in complex networks, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25 (2015), 103111, 7 pp.
doi: 10.1063/1.4931032.
|
[17]
|
S. Milgram, The small world problem, Psychology Today, 2 (1967), 60-67.
|
[18]
|
J. C. Miller, A. C. Slim and E. M. Volz, Edge-based compartmental modelling for infectious disease spread, Journal of the Royal Society Interface, 9 (2012), 890-906.
|
[19]
|
J. C. Miller and I. Z. Kiss, Epidemic spread in networks: Existing methods and current challenges, Mathematical Modelling of Natural Phenomena, 9 (2014), 4-42.
doi: 10.1051/mmnp/20149202.
|
[20]
|
Y. Moreno, R. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, The European Physical Journal B-Condensed Matter and Complex Systems, 26 (2002), 521-529.
doi: 10.1140/epjb/e20020122.
|
[21]
|
M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45 (2003), 167-256.
doi: 10.1137/S003614450342480.
|
[22]
|
R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Physical Review Letters, 86 (2001), 3200.
doi: 10.1103/PhysRevLett.86.3200.
|
[23]
|
D. Shi, Q. Chen and L. Liu, Markov chain-based numerical method for degree distributions of growing networks,
Physical Review E, 71 (2005), 036140.
|
[24]
|
E. Volz, SIR dynamics in random networks with heterogeneous connectivity, Journal of Mathematical Biology, 56 (2008), 293-310.
doi: 10.1007/s00285-007-0116-4.
|
[25]
|
D. J. Watts and S. H. Strogatz, Collective dynamics of "small-world" networks, Nature, 393 (1998), 440-442.
|
[26]
|
H. Zhang, J. Xie, M. Tang and Y. Lai, Suppression of epidemic spreading in complex networks by local information based behavioral responses, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24 (2014), 043106, 7 pp.
doi: 10.1063/1.4896333.
|