[1]

R. Albert and A. L. Barabási, Statistical mechanics of complex networks, Reviews of Modern Physics, 74 (2002), 4797.
doi: 10.1103/RevModPhys.74.47.

[2]

A. L. Barabási, R. Albert and H. Jeong, Meanfield theory for scalefree random networks, Physica A: Statistical Mechanics and its Applications, 272 (1999), 173187.

[3]

A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509512.
doi: 10.1126/science.286.5439.509.

[4]

S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Structure of growing networks with preferential linking, Physical Review Letters, 85 (2000), 4633.
doi: 10.1103/PhysRevLett.85.4633.

[5]

S. N. Dorogovtsev and J. F. F. Mendes, Scaling properties of scalefree evolving networks: Continuous approach, Physical Review E, 63 (2001), 056125.
doi: 10.1103/PhysRevE.63.056125.

[6]

S. N. Dorogovtsev and J. F. F. Mendes,
Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford University Press, New York, 2013.

[7]

P. Erdős and A. Rényi, On the strength of connectedness of a random graph, Acta Mathematica Hungarica, 12 (1961), 261267.
doi: 10.1007/BF02066689.

[8]

M. Faloutsos, P. Faloutsos and C. Faloutsos, On powerlaw relationships of the internet topology, ACM SIGCOMM Computer Communication Review, 29 (1999), 251262.
doi: 10.1145/316188.316229.

[9]

M. J. Gagen and J. S. Mattick, Accelerating, hyperaccelerating, and decelerating networks, Physical Review E, 72 (2005), 016123.
doi: 10.1103/PhysRevE.72.016123.

[10]

T. House and M. J. Keeling, Insights from unifying modern approximations to infections on networks, Journal of The Royal Society Interface, 8 (2011), 6773.
doi: 10.1098/rsif.2010.0179.

[11]

M. J. Keeling, The effects of local spatial structure on epidemiological invasions, Proceedings of the Royal Society of London. Series B: Biological Sciences, 266 (1999), 859867.
doi: 10.1098/rspb.1999.0716.

[12]

K. T. D. Ken and M. J. Keeling, Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases, Proceedings of the National Academy of Sciences, 99 (2002), 1333013335.

[13]

P. L. Krapivsky, S. Redner and F. Leyvraz, Connectivity of growing random networks,
Physical Review Letters, 85 (2000), 4629.

[14]

P. L. Krapivsky and S. Redner, Organization of growing random networks, Physical Review E, 63 (2001), 066123.
doi: 10.1103/PhysRevE.63.066123.

[15]

J. Lindquist, J. Ma, P. van den Driessche and F. H. Willeboordse, Effective degree network disease models, Journal of Mathematical Biology, 62 (2011), 143164.
doi: 10.1007/s0028501003312.

[16]

C. Liu, J. Xie, H. Chen, H. Zhang and M. Tang, Interplay between the local information based behavioral responses and the epidemic spreading in complex networks, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25 (2015), 103111, 7 pp.
doi: 10.1063/1.4931032.

[17]

S. Milgram, The small world problem, Psychology Today, 2 (1967), 6067.

[18]

J. C. Miller, A. C. Slim and E. M. Volz, Edgebased compartmental modelling for infectious disease spread, Journal of the Royal Society Interface, 9 (2012), 890906.

[19]

J. C. Miller and I. Z. Kiss, Epidemic spread in networks: Existing methods and current challenges, Mathematical Modelling of Natural Phenomena, 9 (2014), 442.
doi: 10.1051/mmnp/20149202.

[20]

Y. Moreno, R. PastorSatorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, The European Physical Journal BCondensed Matter and Complex Systems, 26 (2002), 521529.
doi: 10.1140/epjb/e20020122.

[21]

M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45 (2003), 167256.
doi: 10.1137/S003614450342480.

[22]

R. PastorSatorras and A. Vespignani, Epidemic spreading in scalefree networks, Physical Review Letters, 86 (2001), 3200.
doi: 10.1103/PhysRevLett.86.3200.

[23]

D. Shi, Q. Chen and L. Liu, Markov chainbased numerical method for degree distributions of growing networks,
Physical Review E, 71 (2005), 036140.

[24]

E. Volz, SIR dynamics in random networks with heterogeneous connectivity, Journal of Mathematical Biology, 56 (2008), 293310.
doi: 10.1007/s0028500701164.

[25]

D. J. Watts and S. H. Strogatz, Collective dynamics of "smallworld" networks, Nature, 393 (1998), 440442.

[26]

H. Zhang, J. Xie, M. Tang and Y. Lai, Suppression of epidemic spreading in complex networks by local information based behavioral responses, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24 (2014), 043106, 7 pp.
doi: 10.1063/1.4896333.
