• Previous Article
    A mathematical model for the seasonal transmission of schistosomiasis in the lake and marshland regions of China
  • MBE Home
  • This Issue
  • Next Article
    Theoretical investigation on models of circadian rhythms based on dimerization and proteolysis of PER and TIM
October  2017, 14(5&6): 1261-1277. doi: 10.3934/mbe.2017065

Modulation of first-passage time for bursty gene expression via random signals

a. 

School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China

b. 

Department of Applied Mathematics, Yuncheng University, Yuncheng 044000, China

* Corresponding authorr: Jianshe Yu, jsyu@gzhu.edu.cn

Received  November 04, 2016 Revised  January 20, 2017 Published  May 2017

Fund Project: This work was supported by the National Natural Science Foundation of China (11631005,11626246,11526203,11471085), Program for Changjiang Scholars and Innovative Research Team in University (IRT_16R16)

The stochastic nature of cell-specific signal molecules (such as transcription factor, ribosome, etc.) and the intrinsic stochastic nature of gene expression process result in cell-to-cell variations at protein levels. Increasing experimental evidences suggest that cell phenotypic variations often depend on the accumulation of some special proteins. Hence, a natural and fundamental question is: How does input signal affect the timing of protein count up to a given threshold? To this end, we study effects of input signal on the first-passage time (FPT), the time at which the number of proteins crosses a given threshold. Input signal is distinguished into two types: constant input signal and random input signal, regulating only burst frequency (or burst size) of gene expression. Firstly, we derive analytical formulae for FPT moments in each case of constant signal regulation and random signal regulation. Then, we find that random input signal tends to increases the mean and noise of FPT compared with constant input signal. Finally, we observe that different regulation ways of random signal have different effects on FPT, that is, burst size modulation tends to decrease the mean of FPT and increase the noise of FPT compared with burst frequency modulation. Our findings imply a fundamental mechanism that random fluctuating environment may prolong FPT. This can provide theoretical guidance for studies of some cellular key events such as latency of HIV and lysis time of bacteriophage $λ.$ In conclusion, our results reveal impacts of external signal on FPT and aid understanding the regulation mechanism of gene expression.

Citation: Qiuying Li, Lifang Huang, Jianshe Yu. Modulation of first-passage time for bursty gene expression via random signals. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1261-1277. doi: 10.3934/mbe.2017065
References:
[1]

D. W. Adams and J. Errington, Bacterial cell division: Assembly, maintenance and disassembly of the Z ring, Nat. Rev. Microbiol., 7 (2009), 642-653.  doi: 10.1038/nrmicro2198.  Google Scholar

[2]

W. J. BlakeM. KAErnC. R. Cantor and J. J. Collins, Noise in eukaryotic gene expression, Nature, 422 (2003), 633-637.  doi: 10.1038/nature01546.  Google Scholar

[3]

H. BoegerJ. Griesenbeck and R. D. Kornberg, Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription, Cell, 133 (2008), 716-726.  doi: 10.1016/j.cell.2008.02.051.  Google Scholar

[4]

L. CaiN. Friedman and X. S. Xie, Stochastic protein expression in individual cells at the single molecule level, Nature, 440 (2006), 358-362.  doi: 10.1038/nature04599.  Google Scholar

[5]

A. K. Chavali, V. C. Wong and K. Miller-Jensen, Distinct promoter activation mechanisms modulate noise-driven HIV gene expression, Sci. Rep., 5 (2015), 17661. doi: 10.1038/srep17661.  Google Scholar

[6]

S. ChongC. Y. ChenH. Ge and X. S. Xie, Mechanism of transcriptional bursting in bacteria, Cell, 158 (2014), 314-326.  doi: 10.1016/j.cell.  Google Scholar

[7]

J. R. Chubb and T. B. Liverpool, Bursts and pulses: insights from single cell studies into transcriptional mechanisms, Curr. Opin. Genet. Dev., 20 (2010), 478-484.  doi: 10.1016/j.gde.2010.06.009.  Google Scholar

[8]

R. D. DarN. N. Hosmane and M. R. Arkin, Screening for noise in gene expression identifies drug synergies, Science, 344 (2014), 1392-1396.  doi: 10.1126/science.1250220.  Google Scholar

[9]

R. D. Dar, B. S. Razooky and A. Singh, etc., Transcriptional burst frequency and burst size are equally modulated across the human genome, Proc. Natl. Acad. Sci. USA., 109 (2012), 17454–17459. doi: 10.1073/pnas.1213530109.  Google Scholar

[10]

J. J. Dennehy and I. N. Wang, Factors influencing lysis time stochasticity in bacteriophage $λ$, BMC Microbiol., 11 (2011), 174. doi: 10.1186/1471-2180-11-174.  Google Scholar

[11]

R. E. DolmetschK. Xu and R. S. Lewis, Calcium oscillations increase the efficiency and specificity of gene expression, Nature, 392 (1998), 933-936.  doi: 10.1038/31960.  Google Scholar

[12]

V. Elgart, T. Jia, A. T. Fenley and R. Kulkarni, Connecting protein and mRNA burst distributions for stochastic models of gene expression, Phys. Biol., 8 (2011), 046001. doi: 10.1088/1478-3975/8/4/046001.  Google Scholar

[13]

M. B. ElowitzA. J. LevineE. D. Siggia and P. S. Swaim, Stochastic gene expression in a single cell, Science, 297 (2002), 1183-1186.  doi: 10.1126/science.1070919.  Google Scholar

[14]

N. Geva-zatorskyE. DekelE. BatchelorG. Lahav and U. Alon, Fourier analysis and systems identification of the p53 feedback loop, Proc. Natl. Acad. Sci. USA., 107 (2010), 13550-13555.  doi: 10.1073/pnas.1001107107.  Google Scholar

[15]

K. R. Ghusinga, C. A. Vargas-Garcia and A. Singh, A mechanistic stochastic framework for regulating bacterial cell division, Sci. Rep., 6 (2016), 30229. doi: 10.1038/srep30229.  Google Scholar

[16]

T. GregorD. W. TankE. F. Wieschaus and W. Bialek, Probing the limits to positional information, Cell, 130 (2007), 153-164.  doi: 10.1016/j.cell.2007.05.025.  Google Scholar

[17]

A. GründingM. D. Manson and R. Yong, Holins kill without warning, Proc. Natl. Acad. Sci. USA., 98 (2001), 9348-9352.  doi: 10.1073/pnas.151247598.  Google Scholar

[18]

N. K. GrzimekD. DreisS. Schmalz and M. J. Reddehase, Random, asynchronous, and asymmetric transcriptional activity of enhancer-flanking major immediate-early genes ie1/3 and ie2 during murine cytomegalovirus latency in the lungs, J. Virol, 75 (2001), 2692-2705.  doi: 10.1128/JVI.75.6.2692-2705.2001.  Google Scholar

[19]

T. Günther and A. Grundhoff, The epigenetic landscape of latent kaposi sarcoma-associated herpesvirus genomes, PLoS Pathog., 6 (2010), e1000935. doi: 10.1371/journal.ppat.1000935.  Google Scholar

[20]

P. Guptasarma, Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of Escherichia coli?, Bioessays, 17 (1995), 987-997.  doi: 10.1002/bies.950171112.  Google Scholar

[21]

P. HänggiP. Talkner and M. Borkovec, Reaction-rate theory: Fifty years after Kramers, Rev. Mod. Phys., 62 (1990), 251-341.  doi: 10.1103/RevModPhys.62.251.  Google Scholar

[22]

B Hu, D. A. Kessler, W. J. Rappel and H. Levine, Effects of Input noise on a simple biochemical switch, Phy. Rev. Lett., 107 (2011), 148101. doi: 10.1103/PhysRevLett.107.148101.  Google Scholar

[23]

L. Huang, Z. Yuan, P. Liu and T. Zhou, Feedback-induced counterintuitive correlations of gene expression noise with bursting kinetics, Phys. Rev. E, 90 (2014), 052702. doi: 10.1103/PhysRevE.90.052702.  Google Scholar

[24]

P. J. Ingram, M. P. H. Stumpf and J. Stark, Nonidentifiability of the source of intrinsic noise in gene expression from single-burst data, PLoS Comput. Biol., 4 (2008), e1000192. doi: 10.1371/journal.pcbi.1000192.  Google Scholar

[25]

F. JiaoM. Tang and J. Yu, Distribution profiles and their dynamic transition in stochastic gene transcription, J. Differential Equations, 254 (2013), 3307-3328.  doi: 10.1016/j.jde.2013.01.019.  Google Scholar

[26]

I. G. Johnston, B. Gaal and R. P. Neves, et al., Mitochondrial variability as a source of extrinsic cellular noise, PloS Comput. Biol., 8 (2011), e1002416. doi: 10.1371/journal.pcbi.1002416.  Google Scholar

[27]

T. B. Kepler and T. C. Elston, Stochasticity in transcriptional regulation: Origins, consequences, and mathematical representations, Biophys. J., 81 (2001), 3116-3136.  doi: 10.1016/S0006-3495(01)75949-8.  Google Scholar

[28]

T. K. Kim and R. Shiekhattar, Architectural and functional commonalities between enhancers and promoters, Cell, 162 (2015), 948-959.  doi: 10.1016/j.cell.2015.08.008.  Google Scholar

[29]

D. M. Knipe and A. Cliffe, Chromatin control of herpes simplex virus lytic and latent infection, Nat. Rev. Microbiol., 6 (2008), 211-221, doi: 10.1038/nrmicro1794.  Google Scholar

[30]

J. KuangM. Tang and J. Yu, The mean and noise of protein numbers in stochastic gene expression, J. Math. Biol., 67 (2013), 261-291.  doi: 10.1007/s00285-012-0551-8.  Google Scholar

[31]

D. R. Larson, What do expression dynamics tell us about the mechanism of transcription?, Curr. Opin. Genet. Dev., 21 (2011), 591-599.  doi: 10.1016/j.gde.2011.07.010.  Google Scholar

[32]

J. H. LevineY. Lin and M. B. Elowitz, Functional roles of pulsing in genetic circuits, Science, 342 (2013), 1193-1200.  doi: 10.1126/science.1239999.  Google Scholar

[33]

W. LiD. Notani and M. G. Rosenfeld, Enhancers as non-coding RNA transcription units: Recent insights and future perspectives, Nat. Rev. Genet., 17 (2016), 207-223.  doi: 10.1038/nrg.2016.4.  Google Scholar

[34]

Y. LiM. Tang and J. Yu, Transcription dynamics of inducible genes modulated by negative regulations, Mathematical Medicine and Biology, 32 (2015), 115-136.  doi: 10.1093/imammb/dqt019.  Google Scholar

[35]

H. MaamarA. Raj and D. Dubnau, Noise in gene expression determines cell fate in Bacillus subtilis, Science, 317 (2007), 526-529.  doi: 10.1126/science.1140818.  Google Scholar

[36]

H. H. McAdams and A. Arkin, Stochastic mechanisms in gene expression, Proc. Natl. Acad. Sci. USA., 94 (1997), 814-819.  doi: 10.1073/pnas.94.3.814.  Google Scholar

[37]

K. Miller-JensenS. S. DeyD. V. Schaffer and A. P. Arkin, Varying virulence: Epigenetic control of expression noise and disease processes, Trends Biotechnol., 29 (2011), 517-525.  doi: 10.1016/j.tibtech.2011.05.004.  Google Scholar

[38]

T. MorisakiK. Lyon and K. F. DeLuca, Real-time quantification of single RNA translation dynamics in living cells, Science, 352 (2016), 1425-1429.  doi: 10.1126/science.aaf0899.  Google Scholar

[39]

A. Ochab-marcinek and M. Tabaka, Bimodal gene expression in noncooperative regulatory systems, Proc. Natl. Acad. Sci. USA., 107 (2010), 22096-22101.  doi: 10.1073/pnas.1008965107.  Google Scholar

[40]

U. A. OromT. DerrienM. Beringer and K. Gumireddy, Long noncoding RNAs with enhancer-like function in human cells, Cell, 143 (2010), 46-58.  doi: 10.1016/j.cell.2010.09.001.  Google Scholar

[41]

M. Osella and M. C. Lagomarsino, Growthrate-dependent dynamics of a bacterial genetic oscillator, Phys. Rev. E, 87 (2013), 012726. doi: 10.1103/PhysRevE.87.012726.  Google Scholar

[42]

J. Pahle, A. K. Green, C. J. Dixon and U. Kummer, Information transfer in signaling pathways: A study using coupled simulated and experimental data, BMC Bioinformatics, 9 (2008), 139. doi: 10.1186/1471-2105-9-139.  Google Scholar

[43]

J. PaulssonO. G. Berg and M. Ehrenberg, Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation, Proc. Natl. Acad. Sci. USA., 97 (2000), 7148-7153.  doi: 10.1073/pnas.110057697.  Google Scholar

[44]

J. M. Pedraza and J. Paulsson, Effects of molecular memory and bursting on fluctuations in gene expression, Science, 319 (2008), 339-343.  doi: 10.1126/science.1144331.  Google Scholar

[45]

N. PetrenkoR. V. Chereji and M. N. McClean, Noise and interlocking signaling pathways promote distinct transcription factor dynamics in repond to different stresses, Mol. Biol. Cell, 24 (2013), 45-57.  doi: 10.1091/mbc.E12-12-0870.  Google Scholar

[46]

A. Raj and A. V. Oudenaarden, Nature, nurture, or chance: Stochastic gene expression and its consequences, Cell, 135 (2008), 216-226.  doi: 10.1016/j.cell.2008.09.050.  Google Scholar

[47]

J. M. Raser and E. K. O'Shea, Control of stochasticity in eukaryotic gene expression, Science, 304 (2004), 1811-1814.  doi: 10.1126/science.1098641.  Google Scholar

[48]

L. SalmenaL. PolisenoY. TayL. Kats and P. P. Pandolfi, A ceRNA hypothesis: The Rosetta stone of a hidden RNA language, Cell, 146 (2011), 353-358.  doi: 10.1016/j.cell.2011.07.014.  Google Scholar

[49]

A. SanchezS. Choubey and J. Kondev, Regulation of noise in gene expression, Annu. Rev. Biophys., 42 (2013), 469-491.  doi: 10.1146/annurev-biophys-083012-130401.  Google Scholar

[50]

A. Sanchez and I. Golding, Genetic determinants and cellular constraints in noisy gene expression, Science, 342 (2013), 1188-1193.  doi: 10.1126/science.1242975.  Google Scholar

[51]

V. Shahrezaei and P. S. Swain, Analytical distribution for stochastic gene expression, Proc. Natl. Acad. Sci. USA., 105 (2008), 17256-17261.  doi: 10.1073/pnas.0803850105.  Google Scholar

[52]

M. Shreshtha, A. Surendran and A. Ghosh, Estimation of mean first passage time for bursty gene expression, Phys. Biol., 13 (2016), 036004. doi: 10.1088/1478-3975/13/3/036004.  Google Scholar

[53]

A. Singh and J. J. Dennehy, Stochastic holin expression can account for lysis time variation in the bacteriophage $λ$, J. R. Soc. Interface, 11 (2014), 20140140. doi: 10.1098/rsif.2014.0140.  Google Scholar

[54]

A. Singh and M. Soltani, Quantifying intrinsic and extrinsic variability in stochastic gene expression models, PLoS ONE, 8 (2013), e84301. doi: 10.1371/journal.pone.0084301.  Google Scholar

[55]

R. Skupsky, J. C. Burnett and J. E. Foley, et al., HIV promoter integration site primarily modulates transcriptional burst size rather than frequency, PLoS Comput. Biol., 6 (2010), e1000952. doi: 10.1371/journal.pcbi.1000952.  Google Scholar

[56]

M. Soltani, C. A. Vargas-Garcia, D. Antunes and A. Singh, Intercellular variability in protein levels from stochastic expression and noisy cell cycle processes, PLoS Comput. Biol. 12 (2016), e1004972. doi: 10.1371/journal.pcbi.1004972.  Google Scholar

[57]

G. M. Süel, R. P. Kulkarni and J. Dworkin, et al., Tunability and noise dependence in differentiation dynamics, Science, 315 (2007), 1137455. doi: 10.1126/science.1137455.  Google Scholar

[58]

Q. SunM. Tang and J. Yu, Temporal profile of gene transcription noise modulated by cross-talking signal transduction pathways, Bull. Math. Biol., 74 (2012), 375-398.  doi: 10.1007/s11538-011-9683-z.  Google Scholar

[59]

Q. SunM. Tang and J. Yu, Modulation of gene transcription noise by competing transcription factors, J. Math. Biol., 64 (2012), 469-494.  doi: 10.1007/s00285-011-0420-x.  Google Scholar

[60]

D. M. SuterN. MolinaD. GatfieldK. SchneiderU. Schibler and F. Naef, Mammalian genes are transcribed with widely different bursting kinetics, Science, 332 (2011), 472-474.  doi: 10.1126/science.1198817.  Google Scholar

[61]

P. S. SwainM. B. Elowitz and E. D. Siggia, Intrinsic and extrinsic contributions to stochasticity in gene expression, Proc. Natl. Acad. Sci. USA., 99 (2002), 12795-12800.  doi: 10.1073/pnas.162041399.  Google Scholar

[62]

M. Thattai and O.A. Van, Intrinsic noise in gene regulatory networks, Proc. Natl. Acad. Sci. USA., 98 (2001), 8614-8619.  doi: 10.1073/pnas.151588598.  Google Scholar

[63]

R. L. Thompson, C. M. Preston and N. M. Sawtell, De novo synthesis of vp16 coordinates the exit from hsv latency in vivo,PLoS Pathog., 5 (2009), e1000352. doi: 10.1371/journal.ppat.1000352.  Google Scholar

[64]

F. Tostevin, R. W. De and P. R. Ten Wolde, Reliability of frequency and amplitude decoding in gene regulation, Phys. Rev. Lett., 108 (2012), 108104. doi: 10.1103/PhysRevLett.108.108104.  Google Scholar

[65]

Z. Toth, D. T. Maglinte, S. H. Lee, H. R. Lee and L. Y. Wong, Epigenetic analysis of kshv latent and lytic genomes, PLoS Pathog. , 6 (2010), e1001013. doi: 10.1371/journal.ppat.1001013.  Google Scholar

[66]

H. Wang, Z. Yuan, P. Liu and T. Zhou, Mechanisms of information decoding in a cascade system of gene expression, Phys. Rev. E, 93 (2016), 052411. doi: 10.1103/PhysRevE.93.052411.  Google Scholar

[67]

K. B. WeeW. K. YioU. Surana and K. H. Chiam, Transcription factor oscillations induce differential gene expressions, Biophys. J., 102 (2012), 2413-2423.  doi: 10.1016/j.bpj.2012.04.023.  Google Scholar

[68]

S. L. WernerD. Barken and A. Hoffmann, Stimulus specificity of gene expression programs determined by temporal control of IKK activity, Science, 309 (2005), 1857-1861.  doi: 10.1126/science.1113319.  Google Scholar

[69]

J. YuQ. Sun and M. Tang, The nonlinear dynamics and fluctuations of mRNA levels in cross-talking pathway activated transcription, Journal Theoretical Biology, 363 (2014), 223-234.  doi: 10.1016/j.jtbi.2014.08.024.  Google Scholar

[70]

J. YuJ. XiaoX. RenK. Lao and X. S. Xie, Probing gene expression in live cells, one protein molecule at a time, Science, 311 (2006), 1600-1603.  doi: 10.1126/science.1119623.  Google Scholar

[71]

J. ZhangL. Chen and T. Zhou, Analytical distribution and tunability of noise in a model of promoter progress, Biophys. J., 102 (2012), 1247-1257.  doi: 10.1016/j.bpj.2012.02.001.  Google Scholar

show all references

References:
[1]

D. W. Adams and J. Errington, Bacterial cell division: Assembly, maintenance and disassembly of the Z ring, Nat. Rev. Microbiol., 7 (2009), 642-653.  doi: 10.1038/nrmicro2198.  Google Scholar

[2]

W. J. BlakeM. KAErnC. R. Cantor and J. J. Collins, Noise in eukaryotic gene expression, Nature, 422 (2003), 633-637.  doi: 10.1038/nature01546.  Google Scholar

[3]

H. BoegerJ. Griesenbeck and R. D. Kornberg, Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription, Cell, 133 (2008), 716-726.  doi: 10.1016/j.cell.2008.02.051.  Google Scholar

[4]

L. CaiN. Friedman and X. S. Xie, Stochastic protein expression in individual cells at the single molecule level, Nature, 440 (2006), 358-362.  doi: 10.1038/nature04599.  Google Scholar

[5]

A. K. Chavali, V. C. Wong and K. Miller-Jensen, Distinct promoter activation mechanisms modulate noise-driven HIV gene expression, Sci. Rep., 5 (2015), 17661. doi: 10.1038/srep17661.  Google Scholar

[6]

S. ChongC. Y. ChenH. Ge and X. S. Xie, Mechanism of transcriptional bursting in bacteria, Cell, 158 (2014), 314-326.  doi: 10.1016/j.cell.  Google Scholar

[7]

J. R. Chubb and T. B. Liverpool, Bursts and pulses: insights from single cell studies into transcriptional mechanisms, Curr. Opin. Genet. Dev., 20 (2010), 478-484.  doi: 10.1016/j.gde.2010.06.009.  Google Scholar

[8]

R. D. DarN. N. Hosmane and M. R. Arkin, Screening for noise in gene expression identifies drug synergies, Science, 344 (2014), 1392-1396.  doi: 10.1126/science.1250220.  Google Scholar

[9]

R. D. Dar, B. S. Razooky and A. Singh, etc., Transcriptional burst frequency and burst size are equally modulated across the human genome, Proc. Natl. Acad. Sci. USA., 109 (2012), 17454–17459. doi: 10.1073/pnas.1213530109.  Google Scholar

[10]

J. J. Dennehy and I. N. Wang, Factors influencing lysis time stochasticity in bacteriophage $λ$, BMC Microbiol., 11 (2011), 174. doi: 10.1186/1471-2180-11-174.  Google Scholar

[11]

R. E. DolmetschK. Xu and R. S. Lewis, Calcium oscillations increase the efficiency and specificity of gene expression, Nature, 392 (1998), 933-936.  doi: 10.1038/31960.  Google Scholar

[12]

V. Elgart, T. Jia, A. T. Fenley and R. Kulkarni, Connecting protein and mRNA burst distributions for stochastic models of gene expression, Phys. Biol., 8 (2011), 046001. doi: 10.1088/1478-3975/8/4/046001.  Google Scholar

[13]

M. B. ElowitzA. J. LevineE. D. Siggia and P. S. Swaim, Stochastic gene expression in a single cell, Science, 297 (2002), 1183-1186.  doi: 10.1126/science.1070919.  Google Scholar

[14]

N. Geva-zatorskyE. DekelE. BatchelorG. Lahav and U. Alon, Fourier analysis and systems identification of the p53 feedback loop, Proc. Natl. Acad. Sci. USA., 107 (2010), 13550-13555.  doi: 10.1073/pnas.1001107107.  Google Scholar

[15]

K. R. Ghusinga, C. A. Vargas-Garcia and A. Singh, A mechanistic stochastic framework for regulating bacterial cell division, Sci. Rep., 6 (2016), 30229. doi: 10.1038/srep30229.  Google Scholar

[16]

T. GregorD. W. TankE. F. Wieschaus and W. Bialek, Probing the limits to positional information, Cell, 130 (2007), 153-164.  doi: 10.1016/j.cell.2007.05.025.  Google Scholar

[17]

A. GründingM. D. Manson and R. Yong, Holins kill without warning, Proc. Natl. Acad. Sci. USA., 98 (2001), 9348-9352.  doi: 10.1073/pnas.151247598.  Google Scholar

[18]

N. K. GrzimekD. DreisS. Schmalz and M. J. Reddehase, Random, asynchronous, and asymmetric transcriptional activity of enhancer-flanking major immediate-early genes ie1/3 and ie2 during murine cytomegalovirus latency in the lungs, J. Virol, 75 (2001), 2692-2705.  doi: 10.1128/JVI.75.6.2692-2705.2001.  Google Scholar

[19]

T. Günther and A. Grundhoff, The epigenetic landscape of latent kaposi sarcoma-associated herpesvirus genomes, PLoS Pathog., 6 (2010), e1000935. doi: 10.1371/journal.ppat.1000935.  Google Scholar

[20]

P. Guptasarma, Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of Escherichia coli?, Bioessays, 17 (1995), 987-997.  doi: 10.1002/bies.950171112.  Google Scholar

[21]

P. HänggiP. Talkner and M. Borkovec, Reaction-rate theory: Fifty years after Kramers, Rev. Mod. Phys., 62 (1990), 251-341.  doi: 10.1103/RevModPhys.62.251.  Google Scholar

[22]

B Hu, D. A. Kessler, W. J. Rappel and H. Levine, Effects of Input noise on a simple biochemical switch, Phy. Rev. Lett., 107 (2011), 148101. doi: 10.1103/PhysRevLett.107.148101.  Google Scholar

[23]

L. Huang, Z. Yuan, P. Liu and T. Zhou, Feedback-induced counterintuitive correlations of gene expression noise with bursting kinetics, Phys. Rev. E, 90 (2014), 052702. doi: 10.1103/PhysRevE.90.052702.  Google Scholar

[24]

P. J. Ingram, M. P. H. Stumpf and J. Stark, Nonidentifiability of the source of intrinsic noise in gene expression from single-burst data, PLoS Comput. Biol., 4 (2008), e1000192. doi: 10.1371/journal.pcbi.1000192.  Google Scholar

[25]

F. JiaoM. Tang and J. Yu, Distribution profiles and their dynamic transition in stochastic gene transcription, J. Differential Equations, 254 (2013), 3307-3328.  doi: 10.1016/j.jde.2013.01.019.  Google Scholar

[26]

I. G. Johnston, B. Gaal and R. P. Neves, et al., Mitochondrial variability as a source of extrinsic cellular noise, PloS Comput. Biol., 8 (2011), e1002416. doi: 10.1371/journal.pcbi.1002416.  Google Scholar

[27]

T. B. Kepler and T. C. Elston, Stochasticity in transcriptional regulation: Origins, consequences, and mathematical representations, Biophys. J., 81 (2001), 3116-3136.  doi: 10.1016/S0006-3495(01)75949-8.  Google Scholar

[28]

T. K. Kim and R. Shiekhattar, Architectural and functional commonalities between enhancers and promoters, Cell, 162 (2015), 948-959.  doi: 10.1016/j.cell.2015.08.008.  Google Scholar

[29]

D. M. Knipe and A. Cliffe, Chromatin control of herpes simplex virus lytic and latent infection, Nat. Rev. Microbiol., 6 (2008), 211-221, doi: 10.1038/nrmicro1794.  Google Scholar

[30]

J. KuangM. Tang and J. Yu, The mean and noise of protein numbers in stochastic gene expression, J. Math. Biol., 67 (2013), 261-291.  doi: 10.1007/s00285-012-0551-8.  Google Scholar

[31]

D. R. Larson, What do expression dynamics tell us about the mechanism of transcription?, Curr. Opin. Genet. Dev., 21 (2011), 591-599.  doi: 10.1016/j.gde.2011.07.010.  Google Scholar

[32]

J. H. LevineY. Lin and M. B. Elowitz, Functional roles of pulsing in genetic circuits, Science, 342 (2013), 1193-1200.  doi: 10.1126/science.1239999.  Google Scholar

[33]

W. LiD. Notani and M. G. Rosenfeld, Enhancers as non-coding RNA transcription units: Recent insights and future perspectives, Nat. Rev. Genet., 17 (2016), 207-223.  doi: 10.1038/nrg.2016.4.  Google Scholar

[34]

Y. LiM. Tang and J. Yu, Transcription dynamics of inducible genes modulated by negative regulations, Mathematical Medicine and Biology, 32 (2015), 115-136.  doi: 10.1093/imammb/dqt019.  Google Scholar

[35]

H. MaamarA. Raj and D. Dubnau, Noise in gene expression determines cell fate in Bacillus subtilis, Science, 317 (2007), 526-529.  doi: 10.1126/science.1140818.  Google Scholar

[36]

H. H. McAdams and A. Arkin, Stochastic mechanisms in gene expression, Proc. Natl. Acad. Sci. USA., 94 (1997), 814-819.  doi: 10.1073/pnas.94.3.814.  Google Scholar

[37]

K. Miller-JensenS. S. DeyD. V. Schaffer and A. P. Arkin, Varying virulence: Epigenetic control of expression noise and disease processes, Trends Biotechnol., 29 (2011), 517-525.  doi: 10.1016/j.tibtech.2011.05.004.  Google Scholar

[38]

T. MorisakiK. Lyon and K. F. DeLuca, Real-time quantification of single RNA translation dynamics in living cells, Science, 352 (2016), 1425-1429.  doi: 10.1126/science.aaf0899.  Google Scholar

[39]

A. Ochab-marcinek and M. Tabaka, Bimodal gene expression in noncooperative regulatory systems, Proc. Natl. Acad. Sci. USA., 107 (2010), 22096-22101.  doi: 10.1073/pnas.1008965107.  Google Scholar

[40]

U. A. OromT. DerrienM. Beringer and K. Gumireddy, Long noncoding RNAs with enhancer-like function in human cells, Cell, 143 (2010), 46-58.  doi: 10.1016/j.cell.2010.09.001.  Google Scholar

[41]

M. Osella and M. C. Lagomarsino, Growthrate-dependent dynamics of a bacterial genetic oscillator, Phys. Rev. E, 87 (2013), 012726. doi: 10.1103/PhysRevE.87.012726.  Google Scholar

[42]

J. Pahle, A. K. Green, C. J. Dixon and U. Kummer, Information transfer in signaling pathways: A study using coupled simulated and experimental data, BMC Bioinformatics, 9 (2008), 139. doi: 10.1186/1471-2105-9-139.  Google Scholar

[43]

J. PaulssonO. G. Berg and M. Ehrenberg, Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation, Proc. Natl. Acad. Sci. USA., 97 (2000), 7148-7153.  doi: 10.1073/pnas.110057697.  Google Scholar

[44]

J. M. Pedraza and J. Paulsson, Effects of molecular memory and bursting on fluctuations in gene expression, Science, 319 (2008), 339-343.  doi: 10.1126/science.1144331.  Google Scholar

[45]

N. PetrenkoR. V. Chereji and M. N. McClean, Noise and interlocking signaling pathways promote distinct transcription factor dynamics in repond to different stresses, Mol. Biol. Cell, 24 (2013), 45-57.  doi: 10.1091/mbc.E12-12-0870.  Google Scholar

[46]

A. Raj and A. V. Oudenaarden, Nature, nurture, or chance: Stochastic gene expression and its consequences, Cell, 135 (2008), 216-226.  doi: 10.1016/j.cell.2008.09.050.  Google Scholar

[47]

J. M. Raser and E. K. O'Shea, Control of stochasticity in eukaryotic gene expression, Science, 304 (2004), 1811-1814.  doi: 10.1126/science.1098641.  Google Scholar

[48]

L. SalmenaL. PolisenoY. TayL. Kats and P. P. Pandolfi, A ceRNA hypothesis: The Rosetta stone of a hidden RNA language, Cell, 146 (2011), 353-358.  doi: 10.1016/j.cell.2011.07.014.  Google Scholar

[49]

A. SanchezS. Choubey and J. Kondev, Regulation of noise in gene expression, Annu. Rev. Biophys., 42 (2013), 469-491.  doi: 10.1146/annurev-biophys-083012-130401.  Google Scholar

[50]

A. Sanchez and I. Golding, Genetic determinants and cellular constraints in noisy gene expression, Science, 342 (2013), 1188-1193.  doi: 10.1126/science.1242975.  Google Scholar

[51]

V. Shahrezaei and P. S. Swain, Analytical distribution for stochastic gene expression, Proc. Natl. Acad. Sci. USA., 105 (2008), 17256-17261.  doi: 10.1073/pnas.0803850105.  Google Scholar

[52]

M. Shreshtha, A. Surendran and A. Ghosh, Estimation of mean first passage time for bursty gene expression, Phys. Biol., 13 (2016), 036004. doi: 10.1088/1478-3975/13/3/036004.  Google Scholar

[53]

A. Singh and J. J. Dennehy, Stochastic holin expression can account for lysis time variation in the bacteriophage $λ$, J. R. Soc. Interface, 11 (2014), 20140140. doi: 10.1098/rsif.2014.0140.  Google Scholar

[54]

A. Singh and M. Soltani, Quantifying intrinsic and extrinsic variability in stochastic gene expression models, PLoS ONE, 8 (2013), e84301. doi: 10.1371/journal.pone.0084301.  Google Scholar

[55]

R. Skupsky, J. C. Burnett and J. E. Foley, et al., HIV promoter integration site primarily modulates transcriptional burst size rather than frequency, PLoS Comput. Biol., 6 (2010), e1000952. doi: 10.1371/journal.pcbi.1000952.  Google Scholar

[56]

M. Soltani, C. A. Vargas-Garcia, D. Antunes and A. Singh, Intercellular variability in protein levels from stochastic expression and noisy cell cycle processes, PLoS Comput. Biol. 12 (2016), e1004972. doi: 10.1371/journal.pcbi.1004972.  Google Scholar

[57]

G. M. Süel, R. P. Kulkarni and J. Dworkin, et al., Tunability and noise dependence in differentiation dynamics, Science, 315 (2007), 1137455. doi: 10.1126/science.1137455.  Google Scholar

[58]

Q. SunM. Tang and J. Yu, Temporal profile of gene transcription noise modulated by cross-talking signal transduction pathways, Bull. Math. Biol., 74 (2012), 375-398.  doi: 10.1007/s11538-011-9683-z.  Google Scholar

[59]

Q. SunM. Tang and J. Yu, Modulation of gene transcription noise by competing transcription factors, J. Math. Biol., 64 (2012), 469-494.  doi: 10.1007/s00285-011-0420-x.  Google Scholar

[60]

D. M. SuterN. MolinaD. GatfieldK. SchneiderU. Schibler and F. Naef, Mammalian genes are transcribed with widely different bursting kinetics, Science, 332 (2011), 472-474.  doi: 10.1126/science.1198817.  Google Scholar

[61]

P. S. SwainM. B. Elowitz and E. D. Siggia, Intrinsic and extrinsic contributions to stochasticity in gene expression, Proc. Natl. Acad. Sci. USA., 99 (2002), 12795-12800.  doi: 10.1073/pnas.162041399.  Google Scholar

[62]

M. Thattai and O.A. Van, Intrinsic noise in gene regulatory networks, Proc. Natl. Acad. Sci. USA., 98 (2001), 8614-8619.  doi: 10.1073/pnas.151588598.  Google Scholar

[63]

R. L. Thompson, C. M. Preston and N. M. Sawtell, De novo synthesis of vp16 coordinates the exit from hsv latency in vivo,PLoS Pathog., 5 (2009), e1000352. doi: 10.1371/journal.ppat.1000352.  Google Scholar

[64]

F. Tostevin, R. W. De and P. R. Ten Wolde, Reliability of frequency and amplitude decoding in gene regulation, Phys. Rev. Lett., 108 (2012), 108104. doi: 10.1103/PhysRevLett.108.108104.  Google Scholar

[65]

Z. Toth, D. T. Maglinte, S. H. Lee, H. R. Lee and L. Y. Wong, Epigenetic analysis of kshv latent and lytic genomes, PLoS Pathog. , 6 (2010), e1001013. doi: 10.1371/journal.ppat.1001013.  Google Scholar

[66]

H. Wang, Z. Yuan, P. Liu and T. Zhou, Mechanisms of information decoding in a cascade system of gene expression, Phys. Rev. E, 93 (2016), 052411. doi: 10.1103/PhysRevE.93.052411.  Google Scholar

[67]

K. B. WeeW. K. YioU. Surana and K. H. Chiam, Transcription factor oscillations induce differential gene expressions, Biophys. J., 102 (2012), 2413-2423.  doi: 10.1016/j.bpj.2012.04.023.  Google Scholar

[68]

S. L. WernerD. Barken and A. Hoffmann, Stimulus specificity of gene expression programs determined by temporal control of IKK activity, Science, 309 (2005), 1857-1861.  doi: 10.1126/science.1113319.  Google Scholar

[69]

J. YuQ. Sun and M. Tang, The nonlinear dynamics and fluctuations of mRNA levels in cross-talking pathway activated transcription, Journal Theoretical Biology, 363 (2014), 223-234.  doi: 10.1016/j.jtbi.2014.08.024.  Google Scholar

[70]

J. YuJ. XiaoX. RenK. Lao and X. S. Xie, Probing gene expression in live cells, one protein molecule at a time, Science, 311 (2006), 1600-1603.  doi: 10.1126/science.1119623.  Google Scholar

[71]

J. ZhangL. Chen and T. Zhou, Analytical distribution and tunability of noise in a model of promoter progress, Biophys. J., 102 (2012), 1247-1257.  doi: 10.1016/j.bpj.2012.02.001.  Google Scholar

Figure 1.  Schematic diagram for a gene model with burst manner. A: Constant input signal regulates gene expression. Transcription rate is denoted by $\lambda$. Protein count from a single mRNA and mRNA count from a transcription event are in the form of geometric burst and their means are denoted as $b_{2}=\frac{k_{p}}{\delta_{m}}, b_{1}$ respectively. B: Random input signal regulates gene expression. Here, signal regulation is distinguished into two cases. ① represents that input signal $z(t)$ regulates burst rate $\lambda z(t)$. ② represents input signal $z(t)$ regulates the mean $b_{1}z(t)$ of transcriptional burst
Figure 2.  Effects of input signals on $FPT$ moments, where the blue solid lines represent the regulation on burst frequency by constant input signal; the black solid lines represent the regulation on burst size by constant input signal; the yellow dashed lines represent the regulation on burst frequency by random input signal; the red dashed lines represent the regulation on burst size by random input signal. A, B: The dependence of the mean and noise of FPT on the mean of input signal in the case of burst frequency modulation. C, D: The dependence of the mean and noise of FPT on the mean of input signal in the case of burst size modulation. It confirms that noisy signal regulations tend to increase the mean and noise of FPT compared with noiseless signal regulations. Here, the parameters value $\lambda=0.2, b_{1}=50, b_{2}=0.4, \beta=0.5, m=500.$
Figure 3.  Effects of random input signal under different regulating ways, where the muddy circle dotted lines represent burst frequency regulation by random signal; the red square dotted lines represent the burst size regulation by random signal. A: A comparison between the effect of burst frequency regulation and the effect of burst size regulation on the mean of FPT. B: A comparison between the effects of burst frequency regulation and burst size regulation on the noise of FPT. The parameter values are the same as those used in Figure 2.
[1]

Pavol Bokes. Maintaining gene expression levels by positive feedback in burst size in the presence of infinitesimal delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5539-5552. doi: 10.3934/dcdsb.2019070

[2]

Yun Li, Fuke Wu, George Yin. Asymptotic behavior of gene expression with complete memory and two-time scales based on the chemical Langevin equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4417-4443. doi: 10.3934/dcdsb.2019125

[3]

Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences & Engineering, 2016, 13 (3) : 613-629. doi: 10.3934/mbe.2016011

[4]

Marek Bodnar. Distributed delays in Hes1 gene expression model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2125-2147. doi: 10.3934/dcdsb.2019087

[5]

Jian Ren, Feng Jiao, Qiwen Sun, Moxun Tang, Jianshe Yu. The dynamics of gene transcription in random environments. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3167-3194. doi: 10.3934/dcdsb.2018224

[6]

Somkid Intep, Desmond J. Higham. Zero, one and two-switch models of gene regulation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 495-513. doi: 10.3934/dcdsb.2010.14.495

[7]

Giuseppe D'Onofrio, Enrica Pirozzi. Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences & Engineering, 2016, 13 (3) : 495-507. doi: 10.3934/mbe.2016003

[8]

Yuanjia Ma. The optimization algorithm for blind processing of high frequency signal of capacitive sensor. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1399-1412. doi: 10.3934/dcdss.2019096

[9]

Song Liang, Yuan Lou. On the dependence of population size upon random dispersal rate. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2771-2788. doi: 10.3934/dcdsb.2012.17.2771

[10]

Tomás Caraballo, Maria-José Garrido-Atienza, Javier López-de-la-Cruz, Alain Rapaport. Modeling and analysis of random and stochastic input flows in the chemostat model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3591-3614. doi: 10.3934/dcdsb.2018280

[11]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[12]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[13]

Yaiza Canzani, Boris Hanin. Fixed frequency eigenfunction immersions and supremum norms of random waves. Electronic Research Announcements, 2015, 22: 76-86. doi: 10.3934/era.2015.22.76

[14]

Roberto Serra, Marco Villani, Alex Graudenzi, Annamaria Colacci, Stuart A. Kauffman. The simulation of gene knock-out in scale-free random Boolean models of genetic networks. Networks & Heterogeneous Media, 2008, 3 (2) : 333-343. doi: 10.3934/nhm.2008.3.333

[15]

Lizhong Qiang, Bin-Guo Wang. An almost periodic malaria transmission model with time-delayed input of vector. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1525-1546. doi: 10.3934/dcdsb.2017073

[16]

Albert Fannjiang, Knut Solna. Time reversal of parabolic waves and two-frequency Wigner distribution. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 783-802. doi: 10.3934/dcdsb.2006.6.783

[17]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019192

[18]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[19]

Annalisa Pascarella, Alberto Sorrentino, Cristina Campi, Michele Piana. Particle filtering, beamforming and multiple signal classification for the analysis of magnetoencephalography time series: a comparison of algorithms. Inverse Problems & Imaging, 2010, 4 (1) : 169-190. doi: 10.3934/ipi.2010.4.169

[20]

Sie Long Kek, Mohd Ismail Abd Aziz. Output regulation for discrete-time nonlinear stochastic optimal control problems with model-reality differences. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 275-288. doi: 10.3934/naco.2015.5.275

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (35)
  • HTML views (65)
  • Cited by (0)

Other articles
by authors

[Back to Top]