Advanced Search
Article Contents
Article Contents

A bacteriophage model based on CRISPR/Cas immune system in a chemostat

  • * Corresponding author: Wendi Wang

    * Corresponding author: Wendi Wang
Supported in part by the NSF of China (11571284).
Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • Clustered regularly interspaced short palindromic repeats (CRISPRs) along with Cas proteins are a widespread immune system across bacteria and archaea. In this paper, a mathematical model in a chemostat is proposed to investigate the effect of CRISPR/Cas on the bacteriophage dynamics. It is shown that the introduction of CRISPR/Cas can induce a backward bifurcation and transcritical bifurcation. Numerical simulations reveal the coexistence of a stable infection-free equilibrium with an infection equilibrium, or a stable infection-free equilibrium with a stable periodic solution.

    Mathematics Subject Classification: Primary: 92D30; Secondary: 34D20.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Bifurcation graphs for $\kappa\geq\mu$ in case $(C1)$. Panel (a) shows the forward bifurcation with $\varepsilon=0.01$. Panel (b) indicates the backward bifurcation with $\varepsilon=0.8$. H denotes a Hopf bifurcation point, LP means a fold bifurcation point and BP represents the branch point $E_1$

    Figure 2.  Bifurcation graphs for case $(C2)$. Panel (a) shows the forward bifurcation with $\varepsilon=0.3$ and panel (b) demonstrates the backward bifurcation with $\varepsilon=0.8$. H denotes a Hopf bifurcation point, LP means a fold bifurcation point and BP represents a branch point. The solid lines represent stable branches and dashed lines mean unstable branches

    Figure 3.  Bifurcation graphs for case $(C3)$. Panel (a) shows the forward bifurcation at $E_1$ and a transcritical bifurcation at $E_3$ when $\varepsilon=0.1$ and panel (b) demonstrates the bistable phenomena between $E_1, ~E_3$ and a transcritical bifurcation at $E_4$ when $\varepsilon=0.8$. H denotes a Hopf bifurcation point, LP means a fold bifurcation point and BP represents a branch point. The solid lines represent stable branches and dashed lines mean unstable branches

    Figure 4.  Graphs of bistable behaviors in case $(C1)$ with $\kappa\geq\mu$. Panel (a) shows the bistability of the infection-free equilibrium and an coexist equilibrium where $\varepsilon=0.01, ~b=130$. Panel (b) indicates the bistable coexistence of the infection-free equilibria with a stable periodic solution where $\varepsilon=0.9, ~b=260$

  • [1] L. J. Allen and S. W. Vidurupola, Impact of variability in stochastic models of bacteria-phage dynamics applicable to phage therapy, Stochastic Analysis and Applications, 32 (2014), 427-449.  doi: 10.1080/07362994.2014.889922.
    [2] I. Aviram and A. Rabinovitch, Bactria and lytic phage coexistence in a chemostat with periodic nutrient supply, Bulletin of Mathematical Biology, 76 (2014), 225-244.  doi: 10.1007/s11538-013-9917-3.
    [3] E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection, Mathematical Biosciences, 149 (1998), 57-76.  doi: 10.1016/S0025-5564(97)10015-3.
    [4] E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection with latency period, Nonlinear Analysis: Real World Applications, 2 (2001), 35-74.  doi: 10.1016/S0362-546X(99)00285-0.
    [5] B. J. Bohannan and R. E. Lenski, Linking genetic change to community evolution: Insights from studies of bacteria and bacteriophage, Ecology Letters, 3 (2000), 362-377.  doi: 10.1046/j.1461-0248.2000.00161.x.
    [6] S. J. BrounsM. M. Jore and M. Lundgren, Small CRISPR RNAs guide antiviral defense in prokaryotes, Science, 321 (2008), 960-964.  doi: 10.1126/science.1159689.
    [7] A. Buckling and M. Brockhurst, Bacteria-virus coevolution, Evolutionary Systems Biology, 751 (2012), 347-370.  doi: 10.1007/978-1-4614-3567-9_16.
    [8] J. J. Bull, C. S. Vegge and M. Schmerer, Phenotypic resistance and the dynamics of bacterial escape from phage control PloS One, 9 (2014), e94690. doi: 10.1371/journal.pone.0094690.
    [9] B. J. Cairns, A. R. Timms and V. Jansen, Quantitative models of vitro bacteriophage-host dynamics and their application to phage therapy PLoS Pathog, 5 (2009), e1000253. doi: 10.1371/journal.ppat.1000253.
    [10] A. Calsina and J. J. Rivaud, A size structured model for bacteria-phages interaction, Nonlinear Analysis: Real World Applications, 15 (2014), 100-117.  doi: 10.1016/j.nonrwa.2013.06.004.
    [11] A. Campbell, Conditions for existence of bacteriophages, Evolution, 15 (1961), 153-165.  doi: 10.2307/2406076.
    [12] C. L. CarrilloR. J. Atterbury and A. El-Shibiny, Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens, Applied and Environmental Microbiology, 71 (2005), 6554-6563.  doi: 10.1128/AEM.71.11.6554-6563.2005.
    [13] J. J. Dennehy, What can phages tell us about host-pathogen coevolution? International Journal of Evolutionary Biology, 2012 (2012), Article ID 396165, 12 pages. doi: 10.1155/2012/396165.
    [14] H. DeveauJ. E. Garneau and S. Moineau, CRISPR/Cas system and its role in phage-bacteria interactions, Annual Review of Microbiology, 64 (2010), 475-493.  doi: 10.1146/annurev.micro.112408.134123.
    [15] A. DhoogeW. Govaerts and Y. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans Math Software, 29 (2003), 141-164.  doi: 10.1145/779359.779362.
    [16] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosciences, 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.
    [17] D. H. Duckworth, Who discovered bacteriophage?, Bacteriological Reviews, 40 (1976), 793-802. 
    [18] P. C. Fineran and E. Charpentier, Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information, Virology, 434 (2012), 202-209.  doi: 10.1016/j.virol.2012.10.003.
    [19] J. E. Garneau and M. Dupuis, The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA, Nature, 468 (2010), 67-71.  doi: 10.1038/nature09523.
    [20] P. Gómez and A. Buckling, Bacteria-phage antagonistic coevolution in soil, Science, 332 (2011), 106-109. 
    [21] S. A. Gourley and Y. Kuang, A delay reaction-diffusion model of the spread of bacteriophage infection, SIAM Journal of Applied Mathematics, 65 (2004), 550-566.  doi: 10.1137/S0036139903436613.
    [22] J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.
    [23] Z. Han and H. L. Smith, Bacteriophage-resistant and bacteriophage-sensitive bacteria in a chemostat, Mathematical Biosciences and Engineering, 9 (2012), 737-765.  doi: 10.3934/mbe.2012.9.737.
    [24] S. B. HsuS. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, Applied Mathematics, 32 (1977), 366-383.  doi: 10.1137/0132030.
    [25] S. B. Hsu, Limiting behavior for competing species, SIAM Journal on Applied Mathematics, 34 (1978), 760-763.  doi: 10.1137/0134064.
    [26] P. Horvath and R. Barrangou, CRISPR/Cas the immune system of bacteria and archaea, Science, 327 (2010), 167-170.  doi: 10.1126/science.1179555.
    [27] J. IranzoA. E. Lobkovsky and Y. I. Wolf, Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context, Journal of Bacteriology, 195 (2013), 3834-3844.  doi: 10.1128/JB.00412-13.
    [28] B. R. LevinF. M. Stewart and L. Chao, Resource-limited growth, competition, and predation: A model, and experimental studies with bacteria and bacteriophage, American Naturalist, 111 (1977), 3-24.  doi: 10.1086/283134.
    [29] B. R. Levin, Nasty viruses, costly plasmids, population dynamics, and the conditions for establishing and maintaining CRISPR-mediated adaptive immunity in bacteria PLoS Genet, 6 (2010), e1001171. doi: 10.1371/journal.pgen.1001171.
    [30] B. R. Levin, S. Moineau and M. Bushman, The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity PLoS Genet, 9 (2013), e1003312. doi: 10.1371/journal.pgen.1003312.
    [31] T. Li, Analysis of bacterial immune system-A review, Acta Microbiologica Ssinica, 51 (2011), 1297-1303. 
    [32] M. LinH. F. Huo and Y. N. Li, A competitive model in a chemostat with nutrient recycling and antibiotic treatment, Nonlinear Analysis: Real World Applications, 13 (2012), 2540-2555.  doi: 10.1016/j.nonrwa.2012.02.016.
    [33] Y. Ma and H. Chang, A review on immune system of the bacteria and its self versus non-self discrimination, Chinese Veterinary Science, 42 (2012), 657-660. 
    [34] L. A. Marraffini and E. J. Sontheimer, Self versus non-self discrimination during CRISPR RNA-directed immunity, Nature, 463 (2010), 568-571.  doi: 10.1038/nature08703.
    [35] S. MatsuzakiM. Rashel and J. Uchiyama, Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases, Journal of Infection and Chemotherapy, 11 (2005), 211-219.  doi: 10.1007/s10156-005-0408-9.
    [36] K. Northcott and M. Imran, Competition in the presence of a virus in an aquatic system: an SIS model in the chemostat, Journal of Mathematical Biology, 64 (2012), 1043-1086.  doi: 10.1007/s00285-011-0439-z.
    [37] L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7. Springer-Verlag, New York, 1993.
    [38] L. M. Proctor and J. A. Fuhrman, Viral mortality of marine bacteria and cyanobacteria, Nature, 343 (1990), 60-62.  doi: 10.1038/343060a0.
    [39] J. ReeksJ. H. Naismith and M. F. White, CRISPR interference: A structural perspective, Biochemical Journal, 453 (2013), 155-166.  doi: 10.1042/BJ20130316.
    [40] G. RobledoF. Grognard and J. L. Gouzé, Global stability for a model of competition in the chemostat with microbial inputs, Nonlinear Analysis: Real World Applications, 13 (2012), 582-598.  doi: 10.1016/j.nonrwa.2011.07.049.
    [41] K. D. Seed and D. W. Lazinski, A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity, Nature, 494 (2013), 489-491.  doi: 10.1038/nature11927.
    [42] H. L. Smith and H. R. Thieme, Persistence of bacteria and phages in a chemostat, Journal of Mathematical Biology, 64 (2012), 951-979.  doi: 10.1007/s00285-011-0434-4.
    [43] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, Journal of Mathematical Biology, 30 (1992), 755-763.  doi: 10.1007/BF00173267.
    [44] H. R. Thieme, Persistence under relaxed point-dissipativity with application to an endemic model, SIAM J. Math. Anal., 24 (1993), 407-435.  doi: 10.1137/0524026.
    [45] R. A. Usmani, Applied Linear Algebra, Marcel Dekker, New York, 1987.
    [46] W. Wang and X. Zhao, An epidemic model in a patchy environment, Mathematical Biosciences, 190 (2004), 97-112.  doi: 10.1016/j.mbs.2002.11.001.
    [47] R. J. WeldC. Butts and J. A. Heinemann, Models of phage growth and their applicability to phage therapy, Journal of Theoretical Biology, 227 (2004), 1-11.  doi: 10.1016/S0022-5193(03)00262-5.
    [48] X. Zhao, Dynamical Systems in Population Biology, 2$^{nd}$ edition, Springer-Verlag, London, 2003. doi: 10.1007/978-0-387-21761-1.
  • 加载中



Article Metrics

HTML views(567) PDF downloads(393) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint