October  2017, 14(5&6): 1407-1424. doi: 10.3934/mbe.2017073

Dynamics of epidemic models with asymptomatic infection and seasonal succession

1. 

School of Mathematical Science, Shanghai Jiao Tong University, Shanghai 200240, China

2. 

Yangtze Center of Mathematics and Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author

Received  March 11, 2017 Accepted  April 2017 Published  May 2017

In this paper, we consider a compartmental SIRS epidemic model with asymptomatic infection and seasonal succession, which is a periodic discontinuous differential system. The basic reproduction number $\mathcal{R}_0$ is defined and evaluated directly for this model, and uniform persistence of the disease and threshold dynamics are obtained. Specially, global dynamics of the model without seasonal force are studied. It is shown that the model has only a disease-free equilibrium which is globally stable if $\mathcal{R}_0≤ 1$, and as $\mathcal{R}_0>1$ the disease-free equilibrium is unstable and there is an endemic equilibrium, which is globally stable if the recovering rates of asymptomatic infectives and symptomatic infectives are close. These theoretical results provide an intuitive basis for understanding that the asymptomatically infective individuals and the seasonal disease transmission promote the evolution of the epidemic, which allow us to predict the outcomes of control strategies during the course of the epidemic.

Citation: Yilei Tang, Dongmei Xiao, Weinian Zhang, Di Zhu. Dynamics of epidemic models with asymptomatic infection and seasonal succession. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1407-1424. doi: 10.3934/mbe.2017073
References:
[1]

M. E. Alexander and S. M. Moghadas, Bifurcation analysis of SIRS epidemic model with generalized incidence, SIAM J. Appl. Math., 65 (2005), 1794-1816.  doi: 10.1137/040604947.  Google Scholar

[2]

R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, New York, 1991. Google Scholar

[3]

J. ArinoF. BrauerP. van den DriesscheJ. Watmoughd and J. Wu, A model for influenza with vaccination and antiviral treatment, J. Theor. Biol., 253 (2008), 118-130.  doi: 10.1016/j.jtbi.2008.02.026.  Google Scholar

[4]

L. BourouibaA. Teslya and J. Wu, Highly pathogenic avian influenza outbreak mitigated by seasonal low pathogenic strains: insights from dynamic modeling, J. Theor. Biol., 271 (2011), 181-201.  doi: 10.1016/j.jtbi.2010.11.013.  Google Scholar

[5]

F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-3516-1.  Google Scholar

[6]

J. M. Cushing, A juvenile-adult model with periodic vital rates, J. Math. Biol., 53 (2006), 520-539.  doi: 10.1007/s00285-006-0382-6.  Google Scholar

[7]

O. DiekmannJ. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in themodels for infectious disease in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.  doi: 10.1007/BF00178324.  Google Scholar

[8]

K. Dietz, The incidence of infectious diseases under the influence of seasonal fluctuations, Lecture Notes in Biomath, 11 (1976), 1-15, Berlin-Heidelberg-New York: Springer.  doi: 10.1007/978-3-642-93048-5_1.  Google Scholar

[9]

D. J. D. EarnP. RohaniB. M. Bolker and B. T. Grenfell, A simple model for complex dynamical transitions in epidemics, Science, 287 (2000), 667-670.  doi: 10.1126/science.287.5453.667.  Google Scholar

[10]

Z. GuoL. Huang and X. Zou, Impact of discontinuous treatments on disease dynamics in an SIR epidemic model, Math. Biosci. Eng., 9 (2012), 97-110.  doi: 10.3934/mbe.2012.9.97.  Google Scholar

[11]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.  doi: 10.1137/S0036144500371907.  Google Scholar

[12]

Y. HsiehJ. LiuY. Tzeng and J. Wu, Impact of visitors and hospital staff on nosocomial transmission and spread to community, J. Theor. Biol., 356 (2014), 20-29.  doi: 10.1016/j.jtbi.2014.04.003.  Google Scholar

[13]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. R. Soc. London A: Math., 115 (1927), 700-721.   Google Scholar

[14]

I. M. LonginiM. E. HalloranA. Nizam and Y. Yang, Containing pandemic influenza with antiviral agents, Am. J. Epidemiol., 159 (2004), 623-633.  doi: 10.1093/aje/kwh092.  Google Scholar

[15]

R. OlinkyA. Huppert and L. Stone, Seasonal dynamics and thresholds governing recurrent epidemics, J. Math. Biol., 56 (2008), 827-839.  doi: 10.1007/s00285-007-0140-4.  Google Scholar

[16]

I. B. Schwartz, Small amplitude, long periodic out breaks in seasonally driven epidemics, J. Math. Biol., 30 (1992), 473-491.  doi: 10.1007/BF00160532.  Google Scholar

[17]

H. L. Smith, Multiple stable subharmonics for a periodic epidemic model, J. Math. Biol., 17 (1983), 179-190.  doi: 10.1007/BF00305758.  Google Scholar

[18]

H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge Univ. Press, 1995. doi: 10.1017/CBO9780511530043.  Google Scholar

[19]

L. StoneR. Olinky and A. Huppert, Seasonal dynamics of recurrent epidemics, Nature, 446 (2007), 533-536.  doi: 10.1038/nature05638.  Google Scholar

[20]

Y. TangD. HuangS. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621-639.  doi: 10.1137/070700966.  Google Scholar

[21]

S. Towers and Z. Feng, Social contact patterns and control strategies for influenza in the elderly, Math. Biosci., 240 (2012), 241-249.  doi: 10.1016/j.mbs.2012.07.007.  Google Scholar

[22]

S. TowersK. Vogt GeisseY. Zheng and Z. Feng, Antiviral treatment for pandemic influenza: Assessing potential repercussions using a seasonally forced SIR model, J. Theor. Biol., 289 (2011), 259-268.  doi: 10.1016/j.jtbi.2011.08.011.  Google Scholar

[23]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[24]

W. Wang and S. Ruan, Bifurcation in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291 (2004), 775-793.  doi: 10.1016/j.jmaa.2003.11.043.  Google Scholar

[25]

W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equ., 20 (2008), 699-717.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[26]

D. Xiao, Dynamics and bifurcations on a class of population model with seasonal constant-yield harvesting, Discrete Contin. Dynam. Syst. -B, 21 (2016), 699-719.  doi: 10.3934/dcdsb.2016.21.699.  Google Scholar

[27]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429.  doi: 10.1016/j.mbs.2006.09.025.  Google Scholar

[28]

F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516.  doi: 10.1016/j.jmaa.2006.01.085.  Google Scholar

[29]

X. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.  Google Scholar

show all references

References:
[1]

M. E. Alexander and S. M. Moghadas, Bifurcation analysis of SIRS epidemic model with generalized incidence, SIAM J. Appl. Math., 65 (2005), 1794-1816.  doi: 10.1137/040604947.  Google Scholar

[2]

R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, New York, 1991. Google Scholar

[3]

J. ArinoF. BrauerP. van den DriesscheJ. Watmoughd and J. Wu, A model for influenza with vaccination and antiviral treatment, J. Theor. Biol., 253 (2008), 118-130.  doi: 10.1016/j.jtbi.2008.02.026.  Google Scholar

[4]

L. BourouibaA. Teslya and J. Wu, Highly pathogenic avian influenza outbreak mitigated by seasonal low pathogenic strains: insights from dynamic modeling, J. Theor. Biol., 271 (2011), 181-201.  doi: 10.1016/j.jtbi.2010.11.013.  Google Scholar

[5]

F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-3516-1.  Google Scholar

[6]

J. M. Cushing, A juvenile-adult model with periodic vital rates, J. Math. Biol., 53 (2006), 520-539.  doi: 10.1007/s00285-006-0382-6.  Google Scholar

[7]

O. DiekmannJ. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in themodels for infectious disease in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.  doi: 10.1007/BF00178324.  Google Scholar

[8]

K. Dietz, The incidence of infectious diseases under the influence of seasonal fluctuations, Lecture Notes in Biomath, 11 (1976), 1-15, Berlin-Heidelberg-New York: Springer.  doi: 10.1007/978-3-642-93048-5_1.  Google Scholar

[9]

D. J. D. EarnP. RohaniB. M. Bolker and B. T. Grenfell, A simple model for complex dynamical transitions in epidemics, Science, 287 (2000), 667-670.  doi: 10.1126/science.287.5453.667.  Google Scholar

[10]

Z. GuoL. Huang and X. Zou, Impact of discontinuous treatments on disease dynamics in an SIR epidemic model, Math. Biosci. Eng., 9 (2012), 97-110.  doi: 10.3934/mbe.2012.9.97.  Google Scholar

[11]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.  doi: 10.1137/S0036144500371907.  Google Scholar

[12]

Y. HsiehJ. LiuY. Tzeng and J. Wu, Impact of visitors and hospital staff on nosocomial transmission and spread to community, J. Theor. Biol., 356 (2014), 20-29.  doi: 10.1016/j.jtbi.2014.04.003.  Google Scholar

[13]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. R. Soc. London A: Math., 115 (1927), 700-721.   Google Scholar

[14]

I. M. LonginiM. E. HalloranA. Nizam and Y. Yang, Containing pandemic influenza with antiviral agents, Am. J. Epidemiol., 159 (2004), 623-633.  doi: 10.1093/aje/kwh092.  Google Scholar

[15]

R. OlinkyA. Huppert and L. Stone, Seasonal dynamics and thresholds governing recurrent epidemics, J. Math. Biol., 56 (2008), 827-839.  doi: 10.1007/s00285-007-0140-4.  Google Scholar

[16]

I. B. Schwartz, Small amplitude, long periodic out breaks in seasonally driven epidemics, J. Math. Biol., 30 (1992), 473-491.  doi: 10.1007/BF00160532.  Google Scholar

[17]

H. L. Smith, Multiple stable subharmonics for a periodic epidemic model, J. Math. Biol., 17 (1983), 179-190.  doi: 10.1007/BF00305758.  Google Scholar

[18]

H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge Univ. Press, 1995. doi: 10.1017/CBO9780511530043.  Google Scholar

[19]

L. StoneR. Olinky and A. Huppert, Seasonal dynamics of recurrent epidemics, Nature, 446 (2007), 533-536.  doi: 10.1038/nature05638.  Google Scholar

[20]

Y. TangD. HuangS. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621-639.  doi: 10.1137/070700966.  Google Scholar

[21]

S. Towers and Z. Feng, Social contact patterns and control strategies for influenza in the elderly, Math. Biosci., 240 (2012), 241-249.  doi: 10.1016/j.mbs.2012.07.007.  Google Scholar

[22]

S. TowersK. Vogt GeisseY. Zheng and Z. Feng, Antiviral treatment for pandemic influenza: Assessing potential repercussions using a seasonally forced SIR model, J. Theor. Biol., 289 (2011), 259-268.  doi: 10.1016/j.jtbi.2011.08.011.  Google Scholar

[23]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[24]

W. Wang and S. Ruan, Bifurcation in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291 (2004), 775-793.  doi: 10.1016/j.jmaa.2003.11.043.  Google Scholar

[25]

W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equ., 20 (2008), 699-717.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[26]

D. Xiao, Dynamics and bifurcations on a class of population model with seasonal constant-yield harvesting, Discrete Contin. Dynam. Syst. -B, 21 (2016), 699-719.  doi: 10.3934/dcdsb.2016.21.699.  Google Scholar

[27]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429.  doi: 10.1016/j.mbs.2006.09.025.  Google Scholar

[28]

F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516.  doi: 10.1016/j.jmaa.2006.01.085.  Google Scholar

[29]

X. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.  Google Scholar

[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[3]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[4]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[5]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[6]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[7]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[8]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[9]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[10]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[13]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[14]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[15]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[16]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[17]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[18]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[19]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[20]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (197)
  • HTML views (107)
  • Cited by (2)

Other articles
by authors

[Back to Top]