December  2017, 14(5&6): 1477-1498. doi: 10.3934/mbe.2017077

Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations

1. 

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

2. 

College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China

3. 

Lamps and Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada

* Corresponding author: Sanling Yuan

Received  June 23, 2016 Accepted  September 27, 2016 Published  May 2017

Fund Project: The research is supported by the National Natural Science Foundation of China (11271260,11671260), Innovation program of Shanghai Municipal Education Committee (13ZZ116), Shanghai Leading Academic Discipline Project (No. XTKX2012), and the Hujiang Foundation of China (B14005).

In this paper, we investigate the dynamics of a delayed logistic model with both impulsive and stochastic perturbations. The impulse is introduced at fixed moments and the stochastic perturbation is of white noise type which is assumed to be proportional to the population density. We start with the existence and uniqueness of the positive solution of the model, then establish sufficient conditions ensuring its global attractivity. By using the theory of integral Markov semigroups, we further derive sufficient conditions for the existence of the stationary distribution of the system. Finally, we perform the extinction analysis of the model. Numerical simulations illustrate the obtained theoretical results.

Citation: Sanling Yuan, Xuehui Ji, Huaiping Zhu. Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1477-1498. doi: 10.3934/mbe.2017077
References:
[1]

S. AidaS. Kusuoka and D. Strook, On the support of Wiener functionals, Longman Scient. Tech., 284 (1993), 3-34. 

[2]

T. AlkurdiS. Hille and O. Gaans, Ergodicity and stability of a dynamical system perturbed by impulsive random interventions, J. Math. Anal. Appl., 407 (2013), 480-494.  doi: 10.1016/j.jmaa.2013.05.047.

[3]

L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York-London-Sydney, 1974.

[4]

I. Barbalat, Systems dequations differentielles d'osci d'oscillations nonlineaires, Rev. Roumaine Math. Pures Appl., 4 (1959), 267-270. 

[5]

G. Ben Arous and R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (Ⅱ), Probab. Theory Related Fields, 90 (1991), 377-402.  doi: 10.1007/BF01193751.

[6]

A. Freedman, Stochastic differential equations and their applications, Stochastic Differential Equations, 77 (1976), 75-148.  doi: 10.1007/978-3-642-11079-5_2.

[7]

S. Foguel, Harris operators, Israel J. Math., 33 (1979), 281-309.  doi: 10.1007/BF02762166.

[8]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Springer-Verlag, New York, 1992. doi: 10.1007/978-94-015-7920-9.

[9]

R. Z. Has'minskii, Stochastic Stability of Differential Equations, Sijthoof & Noordhoof, Alphen aan den Rijn, The Netherlands, 1980.

[10]

D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.  doi: 10.1137/S0036144500378302.

[11]

D. Jiang and N. Shi, A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., 303 (2005), 164-172.  doi: 10.1016/j.jmaa.2004.08.027.

[12]

D. JiangN. Shi and X. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 340 (2008), 588-597.  doi: 10.1016/j.jmaa.2007.08.014.

[13]

I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer Verlag, Berlin, 1991. doi: 10.1007/978-1-4612-0949-2.

[14]

Y. Kuang, Delay differential equations with applications in population dynamics, in Mathematics in Science and Engineering, Academic Press, New York, 1993.

[15]

X. Li and X. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete Contin. Dyn. Syst., 24 (2009), 523-545.  doi: 10.3934/dcds.2009.24.523.

[16]

M. Liu and K. Wang, Persistence and extinction in stochastic non-autonomous logistic systems, J. Math. Anal. Appl., 375 (2011), 443-457.  doi: 10.1016/j.jmaa.2010.09.058.

[17]

M. Liu and K. Wang, On a stochastic logistic equation with impulsive perturbations, Comput. Math. Appl., 63 (2012), 871-886.  doi: 10.1016/j.camwa.2011.11.003.

[18]

Z. Ma and Y. Zhou, Qualitative and Stability Method of Ordinary Differential Equation, Science Press, Beijing, 2001.

[19]

M. MackeyM. Kamińska and R. Yvinec, Molecular distributions in gene regulatory dynamics, J. Theoret. Biol., 247 (2011), 84-96.  doi: 10.1016/j.jtbi.2011.01.020.

[20]

X. Mao, Stochastic Differential Equations and their Applications, Horwood publishing, Chichester, England, 1997.

[21]

J. Norris, Simplified Malliavin calculus, in SLeminaire de probabilitiLes XX, Lecture Notes in Mathematics, Springer, New York, 1024 (1986), 101–130. doi: 10.1007/BFb0075716.

[22]

K. Pichór and R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl., 215 (1997), 56-74.  doi: 10.1006/jmaa.1997.5609.

[23]

K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668-685.  doi: 10.1006/jmaa.2000.6968.

[24]

S. Ruan, Delay differential equations in single species dynamics, in Delay Differential Equations and Applications, Springer, Berlin, 205 (2006), 477–517. doi: 10.1007/1-4020-3647-7_11.

[25]

R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Math., 43 (1995), 245-262. 

[26]

J. Yan, On the oscillation of impulsive neutral delay differential equations, Chinese Ann. Math., 21A (2000), 755-762. 

show all references

References:
[1]

S. AidaS. Kusuoka and D. Strook, On the support of Wiener functionals, Longman Scient. Tech., 284 (1993), 3-34. 

[2]

T. AlkurdiS. Hille and O. Gaans, Ergodicity and stability of a dynamical system perturbed by impulsive random interventions, J. Math. Anal. Appl., 407 (2013), 480-494.  doi: 10.1016/j.jmaa.2013.05.047.

[3]

L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York-London-Sydney, 1974.

[4]

I. Barbalat, Systems dequations differentielles d'osci d'oscillations nonlineaires, Rev. Roumaine Math. Pures Appl., 4 (1959), 267-270. 

[5]

G. Ben Arous and R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (Ⅱ), Probab. Theory Related Fields, 90 (1991), 377-402.  doi: 10.1007/BF01193751.

[6]

A. Freedman, Stochastic differential equations and their applications, Stochastic Differential Equations, 77 (1976), 75-148.  doi: 10.1007/978-3-642-11079-5_2.

[7]

S. Foguel, Harris operators, Israel J. Math., 33 (1979), 281-309.  doi: 10.1007/BF02762166.

[8]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Springer-Verlag, New York, 1992. doi: 10.1007/978-94-015-7920-9.

[9]

R. Z. Has'minskii, Stochastic Stability of Differential Equations, Sijthoof & Noordhoof, Alphen aan den Rijn, The Netherlands, 1980.

[10]

D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.  doi: 10.1137/S0036144500378302.

[11]

D. Jiang and N. Shi, A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., 303 (2005), 164-172.  doi: 10.1016/j.jmaa.2004.08.027.

[12]

D. JiangN. Shi and X. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 340 (2008), 588-597.  doi: 10.1016/j.jmaa.2007.08.014.

[13]

I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer Verlag, Berlin, 1991. doi: 10.1007/978-1-4612-0949-2.

[14]

Y. Kuang, Delay differential equations with applications in population dynamics, in Mathematics in Science and Engineering, Academic Press, New York, 1993.

[15]

X. Li and X. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete Contin. Dyn. Syst., 24 (2009), 523-545.  doi: 10.3934/dcds.2009.24.523.

[16]

M. Liu and K. Wang, Persistence and extinction in stochastic non-autonomous logistic systems, J. Math. Anal. Appl., 375 (2011), 443-457.  doi: 10.1016/j.jmaa.2010.09.058.

[17]

M. Liu and K. Wang, On a stochastic logistic equation with impulsive perturbations, Comput. Math. Appl., 63 (2012), 871-886.  doi: 10.1016/j.camwa.2011.11.003.

[18]

Z. Ma and Y. Zhou, Qualitative and Stability Method of Ordinary Differential Equation, Science Press, Beijing, 2001.

[19]

M. MackeyM. Kamińska and R. Yvinec, Molecular distributions in gene regulatory dynamics, J. Theoret. Biol., 247 (2011), 84-96.  doi: 10.1016/j.jtbi.2011.01.020.

[20]

X. Mao, Stochastic Differential Equations and their Applications, Horwood publishing, Chichester, England, 1997.

[21]

J. Norris, Simplified Malliavin calculus, in SLeminaire de probabilitiLes XX, Lecture Notes in Mathematics, Springer, New York, 1024 (1986), 101–130. doi: 10.1007/BFb0075716.

[22]

K. Pichór and R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl., 215 (1997), 56-74.  doi: 10.1006/jmaa.1997.5609.

[23]

K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668-685.  doi: 10.1006/jmaa.2000.6968.

[24]

S. Ruan, Delay differential equations in single species dynamics, in Delay Differential Equations and Applications, Springer, Berlin, 205 (2006), 477–517. doi: 10.1007/1-4020-3647-7_11.

[25]

R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Math., 43 (1995), 245-262. 

[26]

J. Yan, On the oscillation of impulsive neutral delay differential equations, Chinese Ann. Math., 21A (2000), 755-762. 

Figure 1.  Trajectories of impulsive stochastic system (5) with different $\sigma$ and $b_k$. Here $(S(0), x(0))=(1, 1)$ and $E^*(x^*, y^*)=(1.0909, 1.8182)$. System (5) is asymptotically stable
Figure 2.  Probability densities of $x(t)$ for system (5) based on $10000$ sample pathes, computed with the noise intensity $\sigma=0.03$, and for (a) differential initial value and (b) different iterative times. There exists stationary distribution and the density is stable
Figure 3.  The dynamics of the system (5) with different $\sigma$. (a) The population $x(t)$ is extinct with $\sigma=0.8$. (c) The population $x(t)$ is persistent with $\sigma=0.1$
[1]

Yanan Zhao, Yuguo Lin, Daqing Jiang, Xuerong Mao, Yong Li. Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2363-2378. doi: 10.3934/dcdsb.2016051

[2]

Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124

[3]

Baoquan Zhou, Yucong Dai. Stationary distribution, extinction, density function and periodicity of an n-species competition system with infinite distributed delays and nonlinear perturbations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022078

[4]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[5]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

[6]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[7]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[8]

Dongxi Li, Ni Zhang, Ming Yan, Yanya Xing. Survival analysis for tumor growth model with stochastic perturbation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5707-5722. doi: 10.3934/dcdsb.2021041

[9]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control and Related Fields, 2022, 12 (1) : 115-146. doi: 10.3934/mcrf.2021004

[10]

Chuang Xu. Strong Allee effect in a stochastic logistic model with mate limitation and stochastic immigration. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2321-2336. doi: 10.3934/dcdsb.2016049

[11]

Gamaliel Blé, Carlos Cabrera. A generalization of Douady's formula. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6183-6188. doi: 10.3934/dcds.2017267

[12]

Xing Liang, Lei Zhang. The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2055-2065. doi: 10.3934/dcdsb.2020280

[13]

Feng Jiao, Jian Ren, Jianshe Yu. Analytical formula and dynamic profile of mRNA distribution. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 241-257. doi: 10.3934/dcdsb.2019180

[14]

Tohru Tsujikawa, Kousuke Kuto, Yasuhito Miyamoto, Hirofumi Izuhara. Stationary solutions for some shadow system of the Keller-Segel model with logistic growth. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 1023-1034. doi: 10.3934/dcdss.2015.8.1023

[15]

Xingwang Yu, Sanling Yuan. Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2373-2390. doi: 10.3934/dcdsb.2020014

[16]

Shangzhi Li, Shangjiang Guo. Persistence and extinction of a stochastic SIS epidemic model with regime switching and Lévy jumps. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5101-5134. doi: 10.3934/dcdsb.2020335

[17]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5641-5660. doi: 10.3934/dcdsb.2020371

[18]

Xueyan Yang, Xiaodi Li, Qiang Xi, Peiyong Duan. Review of stability and stabilization for impulsive delayed systems. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1495-1515. doi: 10.3934/mbe.2018069

[19]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[20]

Zuowei Cai, Jianhua Huang, Liu Yang, Lihong Huang. Periodicity and stabilization control of the delayed Filippov system with perturbation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1439-1467. doi: 10.3934/dcdsb.2019235

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (227)
  • HTML views (127)
  • Cited by (6)

Other articles
by authors

[Back to Top]