Advanced Search
Article Contents
Article Contents

Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network

  • * Corresponding author: Weinian Zhang

    * Corresponding author: Weinian Zhang
Supported by NSFC # 11221101, # 11231001, # 11501475 and SPDEF 16ZB0080.
Abstract Full Text(HTML) Figure(4) / Table(1) Related Papers Cited by
  • There have been some results on bifurcations of codimension one (such as saddle-node, transcritical, pitchfork) and degenerate Hopf bifurcations for an enzyme-catalyzed reaction system comprising a branched network but no further discussion for bifurcations at its cusp. In this paper we give conditions for the existence of a cusp and compute the parameter curves for the Bogdanov-Takens bifurcation, which induces the appearance of homoclinic orbits and periodic orbits, indicating the tendency to steady-states or a rise of periodic oscillations for the concentrations of the substrate and the product.

    Mathematics Subject Classification: 34C23, 92C45.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Reaction scheme

    Figure 2.  Bifurcation surfaces projection on the $(a, \kappa)$-plane

    Figure 3.  Bifurcation diagrams of system (4) for the case that $c>1$ and $b=(c+1)^2/4$

    Figure 4.  An attracting limit cycle

    Table 4.  Dynamics of system (4) in various cases of parameter $(a, \kappa)$

    Parameters $(a, \kappa)$ Equilibria Limit cycles and homoclinic orbits Region in bifurcation diagram
    $E_0$ $E_1$ $E_2$ $E_*$
    $ \mathcal{D}_{I}$ saddle unstable focus saddle $\mathcal{D}_{I}$
    $ \mathcal{L}$ saddle unstable focus saddle one homoclinic rrbit $\mathcal{L}$
    $\mathcal{D}_{II}$ saddle unstable focus saddle one limit cycle $\mathcal{D}_{II}$
    $\mathcal{H}$ saddle stable focus saddle $\mathcal{H}$
    $\mathcal{D}_{III}$ saddle stable focus saddle $\mathcal{D}_{III}$
    $ \mathcal{SN}^+$ saddle-node $\mathcal{SN}^+$
    $ \mathcal{D}_{IV}$ $\mathcal{D}_{IV}$
    $(a_*, \kappa_*)$ cusp $(a_*, \kappa_*)$
    $ \mathcal{SN}^-$ saddle-node $\mathcal{SN}^-$
     | Show Table
    DownLoad: CSV
  • [1] A. Betz and E. Sel'kov, Control of phosphofructokinase [PFK] activity in conditions simulating those of glycolysing yeast extract, FEBS Lett., 3 (1969), 5-9.  doi: 10.1016/0014-5793(69)80082-7.
    [2] S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer, New York, 1982.
    [3] F. A. Davidson and J. Liu, Global stability of the attracting set of an enzyme-catalysed reaction system, Math. Comput. Model., 35 (2002), 1467-1481.  doi: 10.1016/S0895-7177(02)00098-5.
    [4] F. A. DavidsonR. Xu and J. Liu, Existence and uniqueness of limit cycles in an enzyme-catalysed reaction system, Appl. Math. Comput., 127 (2002), 165-179.  doi: 10.1016/S0096-3003(01)00065-0.
    [5] F. DumortierR. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3, Ergod. Theor. Dyn. Syst., 7 (1987), 375-413.  doi: 10.1017/S0143385700004119.
    [6] D. Erle, Nonuniqueness of stable limit cycles in a class of enzyme catalyzed reactions, J. Math. Anal. Appl., 82 (1981), 386-391.  doi: 10.1016/0022-247X(81)90203-1.
    [7] D. ErleK. H. Mayer and T. Plesser, The existence of stable limit cycles for enzyme catalyzed reactions with positive feedback, Math. Biosci., 44 (1979), 191-208.  doi: 10.1016/0025-5564(79)90081-6.
    [8] A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9780511608193.
    [9] A. Goldbeter and G. Dupont, Allosteric regulation, cooperativity and biochemical oscillations, Biophy. Chem., 37 (1990), 341-353.  doi: 10.1016/0301-4622(90)88033-O.
    [10] J. Guckenheimer and P. Holmes, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, Springer, New York, 1990. doi: 10.1007/978-1-4612-1140-2.
    [11] B. Hassard and K. Jiang, Unfolding a point of degenerate Hopf bifurcation in an enzyme-catalyzed reaction model, SIAM J. Math. Anal., 23 (1992), 1291-1304.  doi: 10.1137/0523072.
    [12] X. HouR. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree n in biochemical reactions, Comput. Math. Appl., 43 (2002), 1407-1423.  doi: 10.1016/S0898-1221(02)00108-6.
    [13] J. P. KernévezG. JolyM. C. DubanB. Bunow and D. Thomas, Hysteresis, oscillations, and pattern formation in realistic immmobilized enzyme systems, J. Math. Biol., 7 (1979), 41-56.  doi: 10.1007/BF00276413.
    [14] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Appl. Math. Sci., 112, Springer, New York, 1995. doi: 10.1007/978-1-4757-2421-9.
    [15] Z. LengB. Gao and Z. Wang, Qualitative analysis of a generalized system of saturated enzyme reaction, Math. Comput. Model., 49 (2009), 556-562.  doi: 10.1016/j.mcm.2008.03.006.
    [16] J. Liu, Coordination restriction of enzyme-catalysed reaction systems as nonlinear dynamical systems, Proc. R. Soc. Lond. A, 455 (1999), 285-298.  doi: 10.1098/rspa.1999.0313.
    [17] A. G. Marangoni, Enzymes Kinetics: A Modern Approach, Wiley-Interscience, Hoboken, NJ, 2003. doi: 10.1002/0471267295.
    [18] L. Michaelis and M. L. Menten, Die kinetik der invertinwirkung, Biochem. Z., 49 (1913), 333-369. 
    [19] J. D. Murray, Mathematical Biology Ⅰ: An Introduction, Interdisciplinary Applied Mathematics 17, Springer, Berlin, 2002.
    [20] H. G. Othmer and J. A. Aldridge, The effects of cell density and metabolite flux on cellular dynamics, J. Math. Biol., 5 (1978), 169-200.  doi: 10.1007/BF00275897.
    [21] I. StoleriuF. A. Davidson and J. Liu, Effects of priodic input on the quasi-steady state assumptions for enzyme-catalyzed reactions, J. Math. Biol., 50 (2005), 115-132.  doi: 10.1007/s00285-004-0282-6.
    [22] Y. TangD. Huang and W. Zhang, Direct parametric analysis of an enzyme-catalyzed reaction model, IMA J. Appl. Math., 76 (2011), 876-898.  doi: 10.1093/imamat/hxr005.
    [23] Y. Tang and W. Zhang, Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction, Comput. Math. Appl., 48 (2004), 869-883.  doi: 10.1016/j.camwa.2003.05.012.
    [24] R. VarónM. García-MorenoF. García-MolinaM. E. FuentesE. ArribasJ. M. YagoM. Ll. Amo-Saus and E. Valero, Two new regulatory properties arising from the transient phase kinetics of monocyclic enzyme cascades, J. Math. Chem., 38 (2005), 437-450.  doi: 10.1007/s10910-004-6895-6.
    [25] Y. -Q. Ye et al., Theory of Limit Cycles, Transl. Math. Monogr. 66 American Mathematical Society, Providence, RI, 1986.
    [26] Z. -F. Zhang, T. -R. Ding, W. -Z. Huang and Z. -X. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr., 101 Amer. Math. Soc., Providence, RI, 1992.
    [27] Q. Zhang, L. Liu and W. Zhang, Local bifurcations of the enzyme-catalyzed reaction comprising a branched network, Int. J. Bifur. Chaos, 25 (2015), 155081 (26 pages). doi: 10.1142/S0218127415500819.
  • 加载中




Article Metrics

HTML views(600) PDF downloads(262) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint