[1]
|
A. Betz and E. Sel'kov, Control of phosphofructokinase [PFK] activity in conditions simulating those of glycolysing yeast extract, FEBS Lett., 3 (1969), 5-9.
doi: 10.1016/0014-5793(69)80082-7.
|
[2]
|
S. N. Chow and J. K. Hale,
Methods of Bifurcation Theory, Springer, New York, 1982.
|
[3]
|
F. A. Davidson and J. Liu, Global stability of the attracting set of an enzyme-catalysed reaction system, Math. Comput. Model., 35 (2002), 1467-1481.
doi: 10.1016/S0895-7177(02)00098-5.
|
[4]
|
F. A. Davidson, R. Xu and J. Liu, Existence and uniqueness of limit cycles in an enzyme-catalysed reaction system, Appl. Math. Comput., 127 (2002), 165-179.
doi: 10.1016/S0096-3003(01)00065-0.
|
[5]
|
F. Dumortier, R. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3, Ergod. Theor. Dyn. Syst., 7 (1987), 375-413.
doi: 10.1017/S0143385700004119.
|
[6]
|
D. Erle, Nonuniqueness of stable limit cycles in a class of enzyme catalyzed reactions, J. Math. Anal. Appl., 82 (1981), 386-391.
doi: 10.1016/0022-247X(81)90203-1.
|
[7]
|
D. Erle, K. H. Mayer and T. Plesser, The existence of stable limit cycles for enzyme catalyzed reactions with positive feedback, Math. Biosci., 44 (1979), 191-208.
doi: 10.1016/0025-5564(79)90081-6.
|
[8]
|
A. Goldbeter,
Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511608193.
|
[9]
|
A. Goldbeter and G. Dupont, Allosteric regulation, cooperativity and biochemical oscillations, Biophy. Chem., 37 (1990), 341-353.
doi: 10.1016/0301-4622(90)88033-O.
|
[10]
|
J. Guckenheimer and P. Holmes,
Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, Springer, New York, 1990.
doi: 10.1007/978-1-4612-1140-2.
|
[11]
|
B. Hassard and K. Jiang, Unfolding a point of degenerate Hopf bifurcation in an enzyme-catalyzed reaction model, SIAM J. Math. Anal., 23 (1992), 1291-1304.
doi: 10.1137/0523072.
|
[12]
|
X. Hou, R. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree n in biochemical reactions, Comput. Math. Appl., 43 (2002), 1407-1423.
doi: 10.1016/S0898-1221(02)00108-6.
|
[13]
|
J. P. Kernévez, G. Joly, M. C. Duban, B. Bunow and D. Thomas, Hysteresis, oscillations, and pattern formation in realistic immmobilized enzyme systems, J. Math. Biol., 7 (1979), 41-56.
doi: 10.1007/BF00276413.
|
[14]
|
Y. A. Kuznetsov,
Elements of Applied Bifurcation Theory, Appl. Math. Sci., 112, Springer, New York, 1995.
doi: 10.1007/978-1-4757-2421-9.
|
[15]
|
Z. Leng, B. Gao and Z. Wang, Qualitative analysis of a generalized system of saturated enzyme reaction, Math. Comput. Model., 49 (2009), 556-562.
doi: 10.1016/j.mcm.2008.03.006.
|
[16]
|
J. Liu, Coordination restriction of enzyme-catalysed reaction systems as nonlinear dynamical systems, Proc. R. Soc. Lond. A, 455 (1999), 285-298.
doi: 10.1098/rspa.1999.0313.
|
[17]
|
A. G. Marangoni,
Enzymes Kinetics: A Modern Approach, Wiley-Interscience, Hoboken, NJ, 2003.
doi: 10.1002/0471267295.
|
[18]
|
L. Michaelis and M. L. Menten, Die kinetik der invertinwirkung, Biochem. Z., 49 (1913), 333-369.
|
[19]
|
J. D. Murray,
Mathematical Biology Ⅰ: An Introduction, Interdisciplinary Applied Mathematics 17, Springer, Berlin, 2002.
|
[20]
|
H. G. Othmer and J. A. Aldridge, The effects of cell density and metabolite flux on cellular dynamics, J. Math. Biol., 5 (1978), 169-200.
doi: 10.1007/BF00275897.
|
[21]
|
I. Stoleriu, F. A. Davidson and J. Liu, Effects of priodic input on the quasi-steady state assumptions for enzyme-catalyzed reactions, J. Math. Biol., 50 (2005), 115-132.
doi: 10.1007/s00285-004-0282-6.
|
[22]
|
Y. Tang, D. Huang and W. Zhang, Direct parametric analysis of an enzyme-catalyzed reaction model, IMA J. Appl. Math., 76 (2011), 876-898.
doi: 10.1093/imamat/hxr005.
|
[23]
|
Y. Tang and W. Zhang, Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction, Comput. Math. Appl., 48 (2004), 869-883.
doi: 10.1016/j.camwa.2003.05.012.
|
[24]
|
R. Varón, M. García-Moreno, F. García-Molina, M. E. Fuentes, E. Arribas, J. M. Yago, M. Ll. Amo-Saus and E. Valero, Two new regulatory properties arising from the transient phase kinetics of monocyclic enzyme cascades, J. Math. Chem., 38 (2005), 437-450.
doi: 10.1007/s10910-004-6895-6.
|
[25]
|
Y. -Q. Ye et al.,
Theory of Limit Cycles, Transl. Math. Monogr. 66 American Mathematical Society, Providence, RI, 1986.
|
[26]
|
Z. -F. Zhang, T. -R. Ding, W. -Z. Huang and Z. -X. Dong,
Qualitative Theory of Differential Equations, Transl. Math. Monogr., 101 Amer. Math. Soc., Providence, RI, 1992.
|
[27]
|
Q. Zhang, L. Liu and W. Zhang, Local bifurcations of the enzyme-catalyzed reaction comprising a branched network, Int. J. Bifur. Chaos, 25 (2015), 155081 (26 pages).
doi: 10.1142/S0218127415500819.
|