• Previous Article
    Threshold dynamics of a time periodic and two–group epidemic model with distributed delay
  • MBE Home
  • This Issue
  • Next Article
    Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network
October  2017, 14(5&6): 1515-1533. doi: 10.3934/mbe.2017079

Onset and termination of oscillation of disease spread through contaminated environment

1. 

College of Science, Northeastern University, Shenyang, Liaoning 110819, China

2. 

Center for Disease Modelling, York Institute for Health Research, York University, Toronto, Ontario, M3J 1P3, Canada

* Corresponding author: Shuni Song

Received  August 29, 2016 Accepted  December 30, 2016 Published  May 2017

We consider a reaction diffusion equation with a delayed nonlocal nonlinearity and subject to Dirichlet boundary condition. The model equation is motivated by infection dynamics of disease spread (avian influenza, for example) through environment contamination, and the nonlinearity takes into account of distribution of limited resources for rapid and slow interventions to clean contaminated environment. We determine conditions under which an equilibrium with positive value in the interior of the domain (disease equilibrium) emerges and determine conditions under which Hope bifurcation occurs. For a fixed pair of rapid and slow response delay, we show that nonlinear oscillations can be avoided by distributing resources for both fast or slow interventions.

Citation: Xue Zhang, Shuni Song, Jianhong Wu. Onset and termination of oscillation of disease spread through contaminated environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1515-1533. doi: 10.3934/mbe.2017079
References:
[1]

L. Bourouiba, S. Gourley, R. Liu, J. Takekawa and J. Wu, Avian Influenza Spread and Transmission Dynamics. In Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases, John Wiley and Sons Inc., 2014. Google Scholar

[2]

N. Britton, Reaction-diffusion Equations and Their Applications to Biology, Academic Press, London, 1986.  Google Scholar

[3]

S. Chen and J. Shi, Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differ. Equations, 253 (2012), 3440-3470.  doi: 10.1016/j.jde.2012.08.031.  Google Scholar

[4]

S. Chen and J. Yu, Stability and bifurcations in a nonlocal delayed reaction-diffusion population model, J. Differ. Equaitons, 260 (2016), 218-240.  doi: 10.1016/j.jde.2015.08.038.  Google Scholar

[5]

K. Deng and Y. Wu, Global stability for a nonlocal reaction-diffusion population model, Nonlinear Anal. Real World Appl., 25 (2015), 127-136.  doi: 10.1016/j.nonrwa.2015.03.006.  Google Scholar

[6]

S. GourleyR. Lui and J. Wu, Spatiotemporal distributions of migratory birds: Patchy models with delay, SIAM Journal on Applied Dynamical Systems, 9 (2010), 589-610.  doi: 10.1137/090767261.  Google Scholar

[7]

S. Guo, Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, J. Differ. Equations, 259 (2015), 1409-1448.  doi: 10.1016/j.jde.2015.03.006.  Google Scholar

[8]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.  Google Scholar

[9]

Y. Hsieh, J. Wu, J. Fang, Y. Yang and J. Lou, Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China, PLoS One, 9 (2014), e111834. doi: 10.1371/journal.pone.0111834.  Google Scholar

[10]

R. Hu and Y. Yuan, Spatially nonhomogeneous equilibrium in a reaction-diffusion system with distributed delay, J. Differ. Equations, 250 (2011), 2779-2806.  doi: 10.1016/j.jde.2011.01.011.  Google Scholar

[11]

R. LiuV. Duvvuri and J. Wu, Spread patternformation of H5N1-avian influenza and its implications for control strategies, Math. Model. Nat. Phenom., 3 (2008), 161-179.  doi: 10.1051/mmnp:2008048.  Google Scholar

[12]

Z. P. Ma, Stability and Hopf bifurcation for a three-component reaction-diffeusion population model with delay effect, Appl. Math. Model., 37 (2013), 5984-6007.  doi: 10.1016/j.apm.2012.12.012.  Google Scholar

[13]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[14]

J. SoJ. Wu and X. Zou, A reaction-diffusion model for a single species with age structure. I travelling wavefronts on unbounded domains, Proceedings of the Royal Society: London A, 457 (2001), 1841-1853.  doi: 10.1098/rspa.2001.0789.  Google Scholar

[15]

Y. SuJ. Wei and J. Shi, Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence, J. Dyn. Differ. Equ., 24 (2012), 897-925.  doi: 10.1007/s10884-012-9268-z.  Google Scholar

[16]

X. Wang and J. Wu, Periodic systems of delay differential equations and avian influenza dynamics, J. Math. Sci., 201 (2014), 693-704.   Google Scholar

[17]

Z. WangJ. Wu and R. Liu, Traveling waves of the spread of avian influenza, Proc. Amer. Math. Soc., 140 (2012), 3931-3946.  doi: 10.1090/S0002-9939-2012-11246-8.  Google Scholar

[18]

Z. C. WangW. T. Li and J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420.  doi: 10.1137/080727312.  Google Scholar

[19]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Spinger-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[20]

T. Yi and X. Zou, Global dynamics of a delay differential equaiton with spatial non-locality in an unbounded domain, J. Differ. Equations, 251 (2011), 2598-2611.  doi: 10.1016/j.jde.2011.04.027.  Google Scholar

[21]

G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011), 627-671.  doi: 10.1016/j.matpur.2010.11.005.  Google Scholar

[22]

W. Zuo and Y. Song, Stability and bifurcation analysis of a reaction-diffusion equaiton with spatio-temporal delay, J. Math. Anal. Appl., 430 (2015), 243-261.  doi: 10.1016/j.jmaa.2015.04.089.  Google Scholar

show all references

References:
[1]

L. Bourouiba, S. Gourley, R. Liu, J. Takekawa and J. Wu, Avian Influenza Spread and Transmission Dynamics. In Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases, John Wiley and Sons Inc., 2014. Google Scholar

[2]

N. Britton, Reaction-diffusion Equations and Their Applications to Biology, Academic Press, London, 1986.  Google Scholar

[3]

S. Chen and J. Shi, Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differ. Equations, 253 (2012), 3440-3470.  doi: 10.1016/j.jde.2012.08.031.  Google Scholar

[4]

S. Chen and J. Yu, Stability and bifurcations in a nonlocal delayed reaction-diffusion population model, J. Differ. Equaitons, 260 (2016), 218-240.  doi: 10.1016/j.jde.2015.08.038.  Google Scholar

[5]

K. Deng and Y. Wu, Global stability for a nonlocal reaction-diffusion population model, Nonlinear Anal. Real World Appl., 25 (2015), 127-136.  doi: 10.1016/j.nonrwa.2015.03.006.  Google Scholar

[6]

S. GourleyR. Lui and J. Wu, Spatiotemporal distributions of migratory birds: Patchy models with delay, SIAM Journal on Applied Dynamical Systems, 9 (2010), 589-610.  doi: 10.1137/090767261.  Google Scholar

[7]

S. Guo, Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, J. Differ. Equations, 259 (2015), 1409-1448.  doi: 10.1016/j.jde.2015.03.006.  Google Scholar

[8]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.  Google Scholar

[9]

Y. Hsieh, J. Wu, J. Fang, Y. Yang and J. Lou, Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China, PLoS One, 9 (2014), e111834. doi: 10.1371/journal.pone.0111834.  Google Scholar

[10]

R. Hu and Y. Yuan, Spatially nonhomogeneous equilibrium in a reaction-diffusion system with distributed delay, J. Differ. Equations, 250 (2011), 2779-2806.  doi: 10.1016/j.jde.2011.01.011.  Google Scholar

[11]

R. LiuV. Duvvuri and J. Wu, Spread patternformation of H5N1-avian influenza and its implications for control strategies, Math. Model. Nat. Phenom., 3 (2008), 161-179.  doi: 10.1051/mmnp:2008048.  Google Scholar

[12]

Z. P. Ma, Stability and Hopf bifurcation for a three-component reaction-diffeusion population model with delay effect, Appl. Math. Model., 37 (2013), 5984-6007.  doi: 10.1016/j.apm.2012.12.012.  Google Scholar

[13]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[14]

J. SoJ. Wu and X. Zou, A reaction-diffusion model for a single species with age structure. I travelling wavefronts on unbounded domains, Proceedings of the Royal Society: London A, 457 (2001), 1841-1853.  doi: 10.1098/rspa.2001.0789.  Google Scholar

[15]

Y. SuJ. Wei and J. Shi, Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence, J. Dyn. Differ. Equ., 24 (2012), 897-925.  doi: 10.1007/s10884-012-9268-z.  Google Scholar

[16]

X. Wang and J. Wu, Periodic systems of delay differential equations and avian influenza dynamics, J. Math. Sci., 201 (2014), 693-704.   Google Scholar

[17]

Z. WangJ. Wu and R. Liu, Traveling waves of the spread of avian influenza, Proc. Amer. Math. Soc., 140 (2012), 3931-3946.  doi: 10.1090/S0002-9939-2012-11246-8.  Google Scholar

[18]

Z. C. WangW. T. Li and J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420.  doi: 10.1137/080727312.  Google Scholar

[19]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Spinger-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[20]

T. Yi and X. Zou, Global dynamics of a delay differential equaiton with spatial non-locality in an unbounded domain, J. Differ. Equations, 251 (2011), 2598-2611.  doi: 10.1016/j.jde.2011.04.027.  Google Scholar

[21]

G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011), 627-671.  doi: 10.1016/j.matpur.2010.11.005.  Google Scholar

[22]

W. Zuo and Y. Song, Stability and bifurcation analysis of a reaction-diffusion equaiton with spatio-temporal delay, J. Math. Anal. Appl., 430 (2015), 243-261.  doi: 10.1016/j.jmaa.2015.04.089.  Google Scholar

Figure 1.  Solutions of model (1) approach to a positive steady state with $\tau_{2}=0.6$ and a periodically oscillatory orbit with $\tau_{2}=1.2$, respectively
Figure 2.  The critical value of time delay $\tau_{2}$ with respect to varying $\alpha\in(0, 0.8)$
[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[6]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[9]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[10]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[11]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[14]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[15]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[16]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[17]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[18]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[19]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[20]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (53)
  • HTML views (118)
  • Cited by (0)

Other articles
by authors

[Back to Top]