February  2018, 15(1): 1-20. doi: 10.3934/mbe.2018001

The interplay between models and public health policies: Regional control for a class of spatially structured epidemics (think globally, act locally)

1. 

ADAMSS, Universitá degli Studi di Milano, 20133 MILANO, Italy

2. 

Faculty of Mathematics, "Alexandru Ioan Cuza" University of Iași, "Octav Mayer" Institute of Mathematics of the Romanian Academy, Iași 700506, Romania

* Corresponding author: Vincenzo Capasso

Received  January 12, 2016 Accepted  October 30, 2016 Published  May 2017

Fund Project: The first author wishes to dedicate this review to the late Enea Grosso, Professor of Public Health and Hygiene in Bari, who had inspired most of the work presented here on man-environment epidemic systems.

A review is presented here of the research carried out, by a group including the authors, on the mathematical analysis of epidemic systems. Particular attention is paid to recent analysis of optimal control problems related to spatially structured epidemics driven by environmental pollution. A relevant problem, related to the possible eradication of the epidemic, is the so called zero stabilization. In a series of papers, necessary conditions, and sufficient conditions of stabilizability have been obtained. It has been proved that it is possible to diminish exponentially the epidemic process, in the whole habitat, just by reducing the concentration of the pollutant in a nonempty and sufficiently large subset of the spatial domain. The stabilizability with a feedback control of harvesting type is related to the magnitude of the principal eigenvalue of a certain operator. The problem of finding the optimal position (by translation) of the support of the feedback stabilizing control is faced, in order to minimize both the infected population and the pollutant at a certain finite time.

Citation: Vincenzo Capasso, Sebastian AniȚa. The interplay between models and public health policies: Regional control for a class of spatially structured epidemics (think globally, act locally). Mathematical Biosciences & Engineering, 2018, 15 (1) : 1-20. doi: 10.3934/mbe.2018001
References:
[1]

H. Abbey, An examination of the Reed-Frost theory of epidemics, Human Biology, 24 (1952), 201-233.   Google Scholar

[2]

S. Aniţa and V. Capasso, A stabilizability problem for a reaction-diffusion system modelling a class of spatially structured epidemic model, Nonlinear Anal. Real World Appl., 3 (2002), 453-464.  doi: 10.1016/S1468-1218(01)00025-6.  Google Scholar

[3]

S. Aniţa and V. Capasso, A stabilization strategy for a reaction-diffusion system modelling a class of spatially structured epidemic systems (think globally, act locally), Nonlinear Anal. Real World Appl., 10 (2009), 2026-2035.  doi: 10.1016/j.nonrwa.2008.03.009.  Google Scholar

[4]

S. Aniţa and V. Capasso, On the stabilization of reaction-diffusion systems modelling a class of man-environment epidemics: A review, Mathematical Methods in Applied Sciences, 33 (2010), 1235-1244.  doi: 10.1002/mma.1267.  Google Scholar

[5]

S. Aniţa and V. Capasso, Stabilization of a reaction-diffusion system modelling a class of spatially structured epidemic systems via feedback control, Nonlinear Anal. Real World Appl., 13 (2012), 725-735.  doi: 10.1016/j.nonrwa.2011.08.012.  Google Scholar

[6]

S. Aniţa and V. Capasso, Stabilization of a reaction-diffusion system modelling malaria transmission, Discrete and Continuous Dynamical Systems, Series B, 17 (2012), 1673-1684.  doi: 10.3934/dcdsb.2012.17.1673.  Google Scholar

[7]

S. Aniţa and V. Capasso, Regional control in optimal harvesting of population dynamics, Submitted, 2015. Google Scholar

[8]

V. ArnăutuV. Barbu and V. Capasso, Controlling the spread of a class of epidemics, Appl. Math. Optimiz., 20 (1989), 297-317.  doi: 10.1007/BF01447658.  Google Scholar

[9]

D. G. Aronson, The asymptotic speed of propagation of a simple epidemic, in Nonlinear Diffusion, (W. E. Fitzgibbon and A. F. Walker eds. ) Pitman, London, 1977, 1-23. Google Scholar

[10]

P. Babak, Nonlocal initial problems for coupled reaction-diffusion systems and their applications, Nonlinear Anal. RWA, 8 (2007), 980-996.  doi: 10.1016/j.nonrwa.2006.05.001.  Google Scholar

[11]

N. T. J. Bailey, A simple stochastic epidemic, Biometrika, 37 (1950), 193-202.  doi: 10.1093/biomet/37.3-4.193.  Google Scholar

[12]

M. S. Bartlett, Some evolutionary stochastic processes, J. Roy. Stat. Soc. Ser. B, 11 (1949), 211-229.   Google Scholar

[13]

E. Beretta and V. Capasso, On the general structure of epidemic systems. Global asymptotic stability, Computers and Mathematics in Applications, 12 (1986), 677-694.  doi: 10.1016/0898-1221(86)90054-4.  Google Scholar

[14]

D. Bernoulli, Réflexions sur les avantages de l'inoculation, Mercure de France, June (1760), 173-190.   Google Scholar

[15]

D. J. Bradley, Epidemiological models Theory and reality, in The Population Dynamics of Infectious Diseases, (R. M. Anderson Ed. ) Chapman and Hall, London-New York, 2008, 320-333. doi: 10.1007/978-1-4899-2901-3_10.  Google Scholar

[16]

F. Brauer, Some infectious disease models with population dynamics and general contact rates, Differential and Integral Equations, 3 (1990), 827-836.   Google Scholar

[17]

J. Brownlee, The mathematical theory of random migration and epidemic distribution, Proc. Roy. Soc. Edinburgh, 31 (1912), 262-289.  doi: 10.1017/S0370164600025116.  Google Scholar

[18]

S. BusenbergK. L. Cooke and M. Iannelli, Endemic thresholds and stability in a class of age-structured epidemics, SIAM J. Appl. Math., 48 (1988), 1379-1395.  doi: 10.1137/0148085.  Google Scholar

[19]

V. Capasso, Mathematical Structures of Epidemic Systems (corrected 2nd printing), Lecture Notes Biomath. , vol. 97, Springer-Verlag, Heidelberg, 2008.  Google Scholar

[20]

V. Capasso, Global solution for a diffusive nonlinear deterministic epidemic model, SIAM J. Appl. Math., 35 (1978), 274-284.  doi: 10.1137/0135022.  Google Scholar

[21]

V. Capasso, Asymptotic stability for an integro-differential reaction-diffusion system, J. Math. Anal. Appl., 103 (1984), 575-588.  doi: 10.1016/0022-247X(84)90147-1.  Google Scholar

[22] V. Capasso and D. Bakstein, An Introduction to Continuous-Time Stochastic Processes. Theory, Models, and Applications to Finance, Biology and Medicine, Third Edition, Birkhäuser, New York, 2015.  doi: 10.1007/978-1-4939-2757-9.  Google Scholar
[23]

V. Capasso and B. Forte, Model building as an inverse problem in Biomathematics, in Frontiers in Mathematical Biology, (S. A. Levin Ed. ) Lecture Notes in Biomathematics, SpringerVerlag, Heidelberg, 100 (1994), 600-608. doi: 10.1007/978-3-642-50124-1_35.  Google Scholar

[24]

V. Capasso and K. Kunisch, A reaction-diffusion system arising in modelling man-environment diseases, Quarterly Appl. Math., 46 (1988), 431-450.  doi: 10.1090/qam/963580.  Google Scholar

[25]

V. Capasso and L. Maddalena, Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases, J. Math. Biol., 13 (1981), 173-184.  doi: 10.1007/BF00275212.  Google Scholar

[26]

V. Capasso and L. Maddalena, Saddle point behaviour for a reaction-diffusion system: Application to a class of epidemic models, Math. Comput. Simulation, 24 (1982), 540-547.  doi: 10.1016/0378-4754(82)90656-5.  Google Scholar

[27]

V. Capasso and L. Maddalena, Periodic solutions for a reaction-diffusion system modelling the spread of a class of epidemics, SIAM J. Appl. Math., 43 (1983), 417-427.  doi: 10.1137/0143027.  Google Scholar

[28]

V. Capasso and S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Revue d'Epidemiologie et de la Sante' Publique, 27 (1979), 121-132; Errata corrige, 28 (1980), p390. Google Scholar

[29]

V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978), 43-61.  doi: 10.1016/0025-5564(78)90006-8.  Google Scholar

[30]

V. Capasso and H. R. Thieme, A threshold theorem for a reaction-diffusion epidemic system, in Differential Equations and Applications (R. Aftabizadeh, ed. ), Ohio Univ. Press, Athens, OH, 1989,128-133. Google Scholar

[31]

V. Capasso and R. E. Wilson, Analysis of a reaction-diffusion system modelling man-environment-man epidemics, SIAM J. Appl. Math., 57 (1997), 327-346.  doi: 10.1137/S0036139995284681.  Google Scholar

[32]

C. Castillo-ChavezK. L. CookeW. Huang and S. A. Levin, On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 1: Single population models, J. Math. Biol., 27 (1989), 373-398.  doi: 10.1007/BF00290636.  Google Scholar

[33]

C. Castillo-Chavez, K. L. Cooke, W. Huang and S. A. Levin, On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 2: Multiple group models, in Mathematical and Statistical Approaches to AIDS Epidemiology, (C. Castillo-Chavez ed. ) Lecture Notes in Biomathematics, Springer-Verlag, Heidelberg, 83 (1989), 200-217. doi: 10.1007/978-3-642-93454-4_9.  Google Scholar

[34]

C. T. Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infectious Diseases, 1 (2001), 1-14.   Google Scholar

[35]

K. Dietz, Introduction to McKendrick (1926) Applications of mathematics to medical problems, in Breakthroughs in Statistics Volume Ⅲ, (S. Kotz and N. L. Johnson eds) SpringerVerlag, Heidelberg, 1997, 17-26. Google Scholar

[36]

K. Dietz, Mathematization in sciences epidemics: The fitting of the first dynamic models to data, J. Contemp. Math. Anal., 44 (2009), 97-104.  doi: 10.3103/S1068362309020034.  Google Scholar

[37]

A. d'OnofrioP. Manfredi and E. Salinelli, Vaccination behaviour, information, and the dynamics of SIR vaccine preventable diseases, Theoretical Population Biology, 71 (2007), 301-317.   Google Scholar

[38]

J. L. Doob, Markoff chains-denumerable case, Trans. Am. Math. Society, 58 (1945), 455-473.  doi: 10.2307/1990339.  Google Scholar

[39]

En'ko, On the course of epidemics of some infectious diseases, (Translation from Russian by K. Dietz) Int. J. Epidemiology, 18 (1989), 749-755. Google Scholar

[40] S. N. Ethier and T. G. Kurtz, Markov Processes, Characterization and Convergence, Wiley, New York, 1986.  doi: 10.1002/9780470316658.  Google Scholar
[41]

W. Farr, Progress of epidemics, Second Report of the Registrar General, (1840), 91-98.   Google Scholar

[42]

W. H. Frost, Some conceptions of epidemics in general, Am. J. Epidemiology, 103 (1976), 141-151.   Google Scholar

[43]

D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comp. Physics, 22 (1976), 403-434.  doi: 10.1016/0021-9991(76)90041-3.  Google Scholar

[44]

B. S. Goh, Global stability in a class of predator-prey models, Bull. Math. Biol., 40 (1978), 525-533.  doi: 10.1007/BF02460776.  Google Scholar

[45]

W. H. Hamer, Epidemic disease in England, Lancet, 1 (1906), 733-739.   Google Scholar

[46] A. Henrot and M. Pierre, Variation et Optimisation de Formes. Une Analyse Géométrique, Springer, Berlin, 2005.  doi: 10.1007/3-540-37689-5.  Google Scholar
[47]

O. A. van Herwaarden and J. Grasman, Stochastic epidemics: Major outbreaks and the duration of the endemic period, J. Math. Biol., 35 (1997), 793-813.  doi: 10.1007/s002850050077.  Google Scholar

[48]

H. W. Hethcote and P. van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), 271-287.  doi: 10.1007/BF00160539.  Google Scholar

[49] F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics and Epidemics, SIAM, Philadelphia, 1975.   Google Scholar
[50]

D. G. Kendall, Mathematical models of the spread of infection, in Mathematics and Computer Science in Biology and Medicine, H. M. S. O. , London, 1965,213-225. Google Scholar

[51]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London, Ser. A, 115 (1927), 700-721.   Google Scholar

[52] M. A. Krasnoselkii, Positive Solutions of Operator Equations, Nordhooff, Groningen, 1964.   Google Scholar
[53]

M. A. Krasnoselkii, Translation Along Trajectories of Differential Equations AMS, Providence, R. I. , 1968. Google Scholar

[54] J. L. Lions, Controlabilité Exacte, Stabilisation et Perturbation de Systémes Distribués, Masson, Paris, 1988.   Google Scholar
[55]

W. M. LiuH. M. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.  doi: 10.1007/BF00277162.  Google Scholar

[56]

W. M. LiuS. A. Levin and Y. Iwasa, Influence of nonlinear incidence rate upon the behaviour of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.  doi: 10.1007/BF00276956.  Google Scholar

[57]

A. J. Lotka, Martini's equations for the epidemiology of immunizing diseases, Nature, 111 (1923), 633-634.   Google Scholar

[58]

G. Macdonald, The analysis of malaria parasite rates in infants, Tropical Disease Bull., 47 (1950), 915-938.   Google Scholar

[59] E. Martini, Berechnungen und Beobachtungen zur Epidemiologie und Bekämpfung der Malaria, Gente, Hamburg, 1921.   Google Scholar
[60]

I. Näsell and W. M. Hirsch, The transmission dynamics of schistosomiasis, Comm. Pure Appl. Math., 26 (1973), 395-453.  doi: 10.1002/cpa.3160260402.  Google Scholar

[61]

A. Pugliese, An SEI epidemic model with varying population size, in Differential Equation Models in Biology, Epidemiology and Ecology, (S. Busenberg and M. Martelli eds. ) Lecture Notes in Biomathematics, Springer-Verlag, Heidelberg, 92 (1991), 121-138. doi: 10.1007/978-3-642-45692-3_9.  Google Scholar

[62] M. Puma, Elementi per una Teoria Matematica del Contagio, Editoriale Aeronautica, Rome, 1939.   Google Scholar
[63] R. Ross, The Prevention of Malaria, London, Murray, 1911.   Google Scholar
[64]

R. E. Serfling, Historical review of epidemic theory, Human Biology, 24 (1952), 145-165.   Google Scholar

[65]

N. C. Severo, Generalizations of some stochastic epidemic models, Math. Biosci., 4 (1969), 395-402.  doi: 10.1016/0025-5564(69)90019-4.  Google Scholar

[66]

H. E. Soper, The interpretation of periodicity in disease prevalence, J. Roy. Stat. Soc., 92 (1929), 34-73.  doi: 10.2307/2341437.  Google Scholar

[67] W. Y. Tan, Stochastic Models with Applications to Genetics, Cancers, AIDS and Other Biomedical Systems, World Scientific, Singapore, 2002.  doi: 10.1142/9789812777966.  Google Scholar
[68] H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, N. J., 2003.   Google Scholar
[69]

E. B. Wilson and J. Worcester, The law of mass action in epidemiology, Proc. Nat. Acad. Sci., 31 (1945), 24-34.  doi: 10.1073/pnas.31.1.24.  Google Scholar

show all references

References:
[1]

H. Abbey, An examination of the Reed-Frost theory of epidemics, Human Biology, 24 (1952), 201-233.   Google Scholar

[2]

S. Aniţa and V. Capasso, A stabilizability problem for a reaction-diffusion system modelling a class of spatially structured epidemic model, Nonlinear Anal. Real World Appl., 3 (2002), 453-464.  doi: 10.1016/S1468-1218(01)00025-6.  Google Scholar

[3]

S. Aniţa and V. Capasso, A stabilization strategy for a reaction-diffusion system modelling a class of spatially structured epidemic systems (think globally, act locally), Nonlinear Anal. Real World Appl., 10 (2009), 2026-2035.  doi: 10.1016/j.nonrwa.2008.03.009.  Google Scholar

[4]

S. Aniţa and V. Capasso, On the stabilization of reaction-diffusion systems modelling a class of man-environment epidemics: A review, Mathematical Methods in Applied Sciences, 33 (2010), 1235-1244.  doi: 10.1002/mma.1267.  Google Scholar

[5]

S. Aniţa and V. Capasso, Stabilization of a reaction-diffusion system modelling a class of spatially structured epidemic systems via feedback control, Nonlinear Anal. Real World Appl., 13 (2012), 725-735.  doi: 10.1016/j.nonrwa.2011.08.012.  Google Scholar

[6]

S. Aniţa and V. Capasso, Stabilization of a reaction-diffusion system modelling malaria transmission, Discrete and Continuous Dynamical Systems, Series B, 17 (2012), 1673-1684.  doi: 10.3934/dcdsb.2012.17.1673.  Google Scholar

[7]

S. Aniţa and V. Capasso, Regional control in optimal harvesting of population dynamics, Submitted, 2015. Google Scholar

[8]

V. ArnăutuV. Barbu and V. Capasso, Controlling the spread of a class of epidemics, Appl. Math. Optimiz., 20 (1989), 297-317.  doi: 10.1007/BF01447658.  Google Scholar

[9]

D. G. Aronson, The asymptotic speed of propagation of a simple epidemic, in Nonlinear Diffusion, (W. E. Fitzgibbon and A. F. Walker eds. ) Pitman, London, 1977, 1-23. Google Scholar

[10]

P. Babak, Nonlocal initial problems for coupled reaction-diffusion systems and their applications, Nonlinear Anal. RWA, 8 (2007), 980-996.  doi: 10.1016/j.nonrwa.2006.05.001.  Google Scholar

[11]

N. T. J. Bailey, A simple stochastic epidemic, Biometrika, 37 (1950), 193-202.  doi: 10.1093/biomet/37.3-4.193.  Google Scholar

[12]

M. S. Bartlett, Some evolutionary stochastic processes, J. Roy. Stat. Soc. Ser. B, 11 (1949), 211-229.   Google Scholar

[13]

E. Beretta and V. Capasso, On the general structure of epidemic systems. Global asymptotic stability, Computers and Mathematics in Applications, 12 (1986), 677-694.  doi: 10.1016/0898-1221(86)90054-4.  Google Scholar

[14]

D. Bernoulli, Réflexions sur les avantages de l'inoculation, Mercure de France, June (1760), 173-190.   Google Scholar

[15]

D. J. Bradley, Epidemiological models Theory and reality, in The Population Dynamics of Infectious Diseases, (R. M. Anderson Ed. ) Chapman and Hall, London-New York, 2008, 320-333. doi: 10.1007/978-1-4899-2901-3_10.  Google Scholar

[16]

F. Brauer, Some infectious disease models with population dynamics and general contact rates, Differential and Integral Equations, 3 (1990), 827-836.   Google Scholar

[17]

J. Brownlee, The mathematical theory of random migration and epidemic distribution, Proc. Roy. Soc. Edinburgh, 31 (1912), 262-289.  doi: 10.1017/S0370164600025116.  Google Scholar

[18]

S. BusenbergK. L. Cooke and M. Iannelli, Endemic thresholds and stability in a class of age-structured epidemics, SIAM J. Appl. Math., 48 (1988), 1379-1395.  doi: 10.1137/0148085.  Google Scholar

[19]

V. Capasso, Mathematical Structures of Epidemic Systems (corrected 2nd printing), Lecture Notes Biomath. , vol. 97, Springer-Verlag, Heidelberg, 2008.  Google Scholar

[20]

V. Capasso, Global solution for a diffusive nonlinear deterministic epidemic model, SIAM J. Appl. Math., 35 (1978), 274-284.  doi: 10.1137/0135022.  Google Scholar

[21]

V. Capasso, Asymptotic stability for an integro-differential reaction-diffusion system, J. Math. Anal. Appl., 103 (1984), 575-588.  doi: 10.1016/0022-247X(84)90147-1.  Google Scholar

[22] V. Capasso and D. Bakstein, An Introduction to Continuous-Time Stochastic Processes. Theory, Models, and Applications to Finance, Biology and Medicine, Third Edition, Birkhäuser, New York, 2015.  doi: 10.1007/978-1-4939-2757-9.  Google Scholar
[23]

V. Capasso and B. Forte, Model building as an inverse problem in Biomathematics, in Frontiers in Mathematical Biology, (S. A. Levin Ed. ) Lecture Notes in Biomathematics, SpringerVerlag, Heidelberg, 100 (1994), 600-608. doi: 10.1007/978-3-642-50124-1_35.  Google Scholar

[24]

V. Capasso and K. Kunisch, A reaction-diffusion system arising in modelling man-environment diseases, Quarterly Appl. Math., 46 (1988), 431-450.  doi: 10.1090/qam/963580.  Google Scholar

[25]

V. Capasso and L. Maddalena, Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases, J. Math. Biol., 13 (1981), 173-184.  doi: 10.1007/BF00275212.  Google Scholar

[26]

V. Capasso and L. Maddalena, Saddle point behaviour for a reaction-diffusion system: Application to a class of epidemic models, Math. Comput. Simulation, 24 (1982), 540-547.  doi: 10.1016/0378-4754(82)90656-5.  Google Scholar

[27]

V. Capasso and L. Maddalena, Periodic solutions for a reaction-diffusion system modelling the spread of a class of epidemics, SIAM J. Appl. Math., 43 (1983), 417-427.  doi: 10.1137/0143027.  Google Scholar

[28]

V. Capasso and S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Revue d'Epidemiologie et de la Sante' Publique, 27 (1979), 121-132; Errata corrige, 28 (1980), p390. Google Scholar

[29]

V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978), 43-61.  doi: 10.1016/0025-5564(78)90006-8.  Google Scholar

[30]

V. Capasso and H. R. Thieme, A threshold theorem for a reaction-diffusion epidemic system, in Differential Equations and Applications (R. Aftabizadeh, ed. ), Ohio Univ. Press, Athens, OH, 1989,128-133. Google Scholar

[31]

V. Capasso and R. E. Wilson, Analysis of a reaction-diffusion system modelling man-environment-man epidemics, SIAM J. Appl. Math., 57 (1997), 327-346.  doi: 10.1137/S0036139995284681.  Google Scholar

[32]

C. Castillo-ChavezK. L. CookeW. Huang and S. A. Levin, On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 1: Single population models, J. Math. Biol., 27 (1989), 373-398.  doi: 10.1007/BF00290636.  Google Scholar

[33]

C. Castillo-Chavez, K. L. Cooke, W. Huang and S. A. Levin, On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 2: Multiple group models, in Mathematical and Statistical Approaches to AIDS Epidemiology, (C. Castillo-Chavez ed. ) Lecture Notes in Biomathematics, Springer-Verlag, Heidelberg, 83 (1989), 200-217. doi: 10.1007/978-3-642-93454-4_9.  Google Scholar

[34]

C. T. Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infectious Diseases, 1 (2001), 1-14.   Google Scholar

[35]

K. Dietz, Introduction to McKendrick (1926) Applications of mathematics to medical problems, in Breakthroughs in Statistics Volume Ⅲ, (S. Kotz and N. L. Johnson eds) SpringerVerlag, Heidelberg, 1997, 17-26. Google Scholar

[36]

K. Dietz, Mathematization in sciences epidemics: The fitting of the first dynamic models to data, J. Contemp. Math. Anal., 44 (2009), 97-104.  doi: 10.3103/S1068362309020034.  Google Scholar

[37]

A. d'OnofrioP. Manfredi and E. Salinelli, Vaccination behaviour, information, and the dynamics of SIR vaccine preventable diseases, Theoretical Population Biology, 71 (2007), 301-317.   Google Scholar

[38]

J. L. Doob, Markoff chains-denumerable case, Trans. Am. Math. Society, 58 (1945), 455-473.  doi: 10.2307/1990339.  Google Scholar

[39]

En'ko, On the course of epidemics of some infectious diseases, (Translation from Russian by K. Dietz) Int. J. Epidemiology, 18 (1989), 749-755. Google Scholar

[40] S. N. Ethier and T. G. Kurtz, Markov Processes, Characterization and Convergence, Wiley, New York, 1986.  doi: 10.1002/9780470316658.  Google Scholar
[41]

W. Farr, Progress of epidemics, Second Report of the Registrar General, (1840), 91-98.   Google Scholar

[42]

W. H. Frost, Some conceptions of epidemics in general, Am. J. Epidemiology, 103 (1976), 141-151.   Google Scholar

[43]

D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comp. Physics, 22 (1976), 403-434.  doi: 10.1016/0021-9991(76)90041-3.  Google Scholar

[44]

B. S. Goh, Global stability in a class of predator-prey models, Bull. Math. Biol., 40 (1978), 525-533.  doi: 10.1007/BF02460776.  Google Scholar

[45]

W. H. Hamer, Epidemic disease in England, Lancet, 1 (1906), 733-739.   Google Scholar

[46] A. Henrot and M. Pierre, Variation et Optimisation de Formes. Une Analyse Géométrique, Springer, Berlin, 2005.  doi: 10.1007/3-540-37689-5.  Google Scholar
[47]

O. A. van Herwaarden and J. Grasman, Stochastic epidemics: Major outbreaks and the duration of the endemic period, J. Math. Biol., 35 (1997), 793-813.  doi: 10.1007/s002850050077.  Google Scholar

[48]

H. W. Hethcote and P. van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), 271-287.  doi: 10.1007/BF00160539.  Google Scholar

[49] F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics and Epidemics, SIAM, Philadelphia, 1975.   Google Scholar
[50]

D. G. Kendall, Mathematical models of the spread of infection, in Mathematics and Computer Science in Biology and Medicine, H. M. S. O. , London, 1965,213-225. Google Scholar

[51]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London, Ser. A, 115 (1927), 700-721.   Google Scholar

[52] M. A. Krasnoselkii, Positive Solutions of Operator Equations, Nordhooff, Groningen, 1964.   Google Scholar
[53]

M. A. Krasnoselkii, Translation Along Trajectories of Differential Equations AMS, Providence, R. I. , 1968. Google Scholar

[54] J. L. Lions, Controlabilité Exacte, Stabilisation et Perturbation de Systémes Distribués, Masson, Paris, 1988.   Google Scholar
[55]

W. M. LiuH. M. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.  doi: 10.1007/BF00277162.  Google Scholar

[56]

W. M. LiuS. A. Levin and Y. Iwasa, Influence of nonlinear incidence rate upon the behaviour of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.  doi: 10.1007/BF00276956.  Google Scholar

[57]

A. J. Lotka, Martini's equations for the epidemiology of immunizing diseases, Nature, 111 (1923), 633-634.   Google Scholar

[58]

G. Macdonald, The analysis of malaria parasite rates in infants, Tropical Disease Bull., 47 (1950), 915-938.   Google Scholar

[59] E. Martini, Berechnungen und Beobachtungen zur Epidemiologie und Bekämpfung der Malaria, Gente, Hamburg, 1921.   Google Scholar
[60]

I. Näsell and W. M. Hirsch, The transmission dynamics of schistosomiasis, Comm. Pure Appl. Math., 26 (1973), 395-453.  doi: 10.1002/cpa.3160260402.  Google Scholar

[61]

A. Pugliese, An SEI epidemic model with varying population size, in Differential Equation Models in Biology, Epidemiology and Ecology, (S. Busenberg and M. Martelli eds. ) Lecture Notes in Biomathematics, Springer-Verlag, Heidelberg, 92 (1991), 121-138. doi: 10.1007/978-3-642-45692-3_9.  Google Scholar

[62] M. Puma, Elementi per una Teoria Matematica del Contagio, Editoriale Aeronautica, Rome, 1939.   Google Scholar
[63] R. Ross, The Prevention of Malaria, London, Murray, 1911.   Google Scholar
[64]

R. E. Serfling, Historical review of epidemic theory, Human Biology, 24 (1952), 145-165.   Google Scholar

[65]

N. C. Severo, Generalizations of some stochastic epidemic models, Math. Biosci., 4 (1969), 395-402.  doi: 10.1016/0025-5564(69)90019-4.  Google Scholar

[66]

H. E. Soper, The interpretation of periodicity in disease prevalence, J. Roy. Stat. Soc., 92 (1929), 34-73.  doi: 10.2307/2341437.  Google Scholar

[67] W. Y. Tan, Stochastic Models with Applications to Genetics, Cancers, AIDS and Other Biomedical Systems, World Scientific, Singapore, 2002.  doi: 10.1142/9789812777966.  Google Scholar
[68] H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, N. J., 2003.   Google Scholar
[69]

E. B. Wilson and J. Worcester, The law of mass action in epidemiology, Proc. Nat. Acad. Sci., 31 (1945), 24-34.  doi: 10.1073/pnas.31.1.24.  Google Scholar

Figure 1.  The transfer diagram for an SEIR compartmental model including the susceptible class S, the exposed, but not yet infective, class E, the infective class I, and the removed class R
Figure 2.  Nonlinear forces of infection [29]
Figure 3.  Think Globally, Act Locally
[1]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[2]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[3]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[4]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[5]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[6]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[7]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[8]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[9]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[10]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, 2021, 20 (2) : 623-650. doi: 10.3934/cpaa.2020283

[11]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[12]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[13]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[14]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[15]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[16]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[17]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[18]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[19]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[20]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (88)
  • HTML views (200)
  • Cited by (0)

Other articles
by authors

[Back to Top]