\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Prediction of influenza peaks in Russian cities: Comparing the accuracy of two SEIR models

  • * Corresponding author: vnleonenko@yandex.ru

    * Corresponding author: vnleonenko@yandex.ru 
Abstract Full Text(HTML) Figure(10) / Table(3) Related Papers Cited by
  • This paper is dedicated to the application of two types of SEIR models to the influenza outbreak peak prediction in Russian cities. The first one is a continuous SEIR model described by a system of ordinary differential equations. The second one is a discrete model formulated as a set of difference equations, which was used in the Baroyan-Rvachev modeling framework for the influenza outbreak prediction in the Soviet Union. The outbreak peak day and height predictions were performed by calibrating both models to varied-size samples of long-term data on ARI incidence in Moscow, Saint Petersburg, and Novosibirsk. The accuracy of the modeling predictions on incomplete data was compared with a number of other peak forecasting methods tested on the same dataset. The drawbacks of the described prediction approach and possible ways to overcome them are discussed.

    Mathematics Subject Classification: 37N25, 65C20, 92C60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  An example of the epidemic curve extraction from the interpolated ARI incidence

    Figure 2.  ARI incidence curve showing the discrepancy between different curve allocation algorithms

    Figure 3.  The fitting quality of the algorithms in the case of complete outbreak data

    Figure 4.  An example of epidemic peak prediction by Baroyan-Rvachev model

    Figure 5.  An example of estimating forecast accuracies. The height of the green bars corresponds to the duration of the outbreak before reaching the peak, the markers indicate the day when the accuracy criterion was reached by the particular model. The absent bars correspond to the years without an epidemic outbreak

    Figure 6.  The dependence of the percentage of accurate predictions from the number of days before the peak, in overall for the three cities

    Figure 7.  The dependence of the percentage of accurate predictions from the number of days before the peak, horizontal stripe

    Figure 8.  The dependence of the percentage of accurate predictions from the number of days before the peak, vertical stripe

    Figure 9.  The dependence of the percentage of accurate predictions from the number of days before the peak, square

    Figure 10.  The comparison of the statistical and modeling forecasting methods

    Table 1.  Parameters of the fitting algorithm for the continuous SEIR model

    DefinitionDescriptionValueUnit
    Epidemiological parameters
    $\alpha$Initial ratio of susceptible individuals in the populationEstimated-
    $\beta$Intensity of infectionEstimated1/(person$\cdot$day)
    $\gamma$Intensity of transition to infective form of the disease0.391/day
    $\delta$Intensity of recovery0.1331/day
    $I_{0}$Initial ratio of the infected0.0001-
    Curve positioning parameters
    $k_{inc}$Relative vertical bias of the modeled incidence curve positionEstimated-
    $\Delta_s$Absolute horizontal bias of the modeled incidence curve epidemic start position compared to the dataEstimatedday
     | Show Table
    DownLoad: CSV

    Table 2.  Parameters of the fitting algorithm for Baroyan-Rvachev model

    DefinitionDescriptionValueUnit
    Model parameters
    $\alpha$Initial ratio of susceptible individuals in the populationEstimated-
    $\beta$Intensity of infectionEstimated-
    $I_{0}$Initial ratio of infected in the populationEstimated-
    $T$Duration of infectionFixedday
    $g_\tau$A fraction of infectious individuals among those who were infected $\tau$ days before the current momentFixed-
    $\rho$Population sizeFixedpersons
    Curve positioning parameters
    $\Delta_p$Absolute horizontal bias of the modeled incidence curve peak position compared to the dataEstimatedday
     | Show Table
    DownLoad: CSV

    Table 3.  Varied model parameters

    DefinitionDescriptionValueVariation type
    Continuous SEIR model
    $\alpha$Initial ratio of susceptible individuals in the population$[10^{-2}; 1.0]$BFGS optimization
    $\beta$Intensity of infection$[10^{-7}; 50.0]$BFGS optimization
    $k_{inc}$Relative vertical bias of the modeled incidence curve position$[0.8; 1.0]$BFGS optimization
    $\Delta_s$Absolute horizontal bias of the modeled incidence curve epidemic start position compared to the data$5, \dots, 54$Iteration
    Baroyan-Rvachev model
    $k$The service parameter defining the product of $\alpha$ and $\beta$$[1.02; 1.6]$BFGS optimization
    $I_{0}$Initial ratio of infected in the population$[10^{-1}; 50.0]$BFGS optimization
    $\Delta_p$*Absolute horizontal bias of the modeled incidence curve peak position compared to the data$-3, \dots, 3$Iteration
    $\theta^{(dat)}_{peak}$**Prospected incidence curve peak day$17, \dots, 83$Iteration
      * For complete incidence data ** For incomplete incidence data
     | Show Table
    DownLoad: CSV
  •   O. Baroyan, U. Basilevsky, V. Ermakov, K. Frank, L. Rvachev and V. Shashkov, Computer modelling of influenza epidemics for large-scale systems of cities and territories, in Proc. WHO Symposium on Quantitative Epidemiology, Moscow, 1970.
      R. Burger , G. Chowell , P. Mulet  and  L. Villada , Modelling the spatial-temporal progression of the 2009 A/H1N1 influenza pandemic in Chile, Mathematical Biosciences and Engineering, 13 (2016) , 43-65.  doi: 10.3934/mbe.2016.13.43.
      CDC, Influenza signs and symptoms and the role of laboratory diagnostics, [online], http://www.cdc.gov/flu/professionals/diagnosis/labrolesprocedures.htm.
      CDC, People with heart disease and those who have had a stroke are at high risk of developing complications from influenza (the flu), [online], http://www.cdc.gov/flu/heartdisease/.
      J. -P. Chretien, D. George, J. Shaman, R. A. Chitale and F. E. McKenzie, Influenza forecasting in human populations: A scoping review, PloS one, 9 (2014), e94130. doi: 10.1371/journal.pone.0094130.
      A. D. Cliff, P. Haggett and J. K. Ord, Spatial Aspects of Influenza Epidemics, Routledge, 1986.
      V. Colizza, A. Barrat, M. Barthelemy, A. -J. Valleron and A. Vespignani, Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions, PLoS Med, 4 (2007), e13.
      S. Cook, C. Conrad, A. L. Fowlkes and M. H. Mohebbi, Assessing google flu trends performance in the united states during the 2009 influenza virus a (h1n1) pandemic PloS one, 6 (2011), e23610. doi: 10.1371/journal.pone.0023610.
      N. Goeyvaerts, L. Willem, K. Van~Kerckhove, Y. Vandendijck, G. Hanquet, P. Beutels and N. Hens, Estimating dynamic transmission model parameters for seasonal influenza by fitting to age and season-specific influenza-like illness incidence Epidemics, 13 (2015), p1. doi: 10.1016/j.epidem.2015.04.002.
      I. Hall , R. Gani , H. Hughes  and  S. Leach , Real-time epidemic forecasting for pandemic influenza, Epidemiology and Infection, 135 (2007) , 372-385.  doi: 10.1017/S0950268806007084.
      D. He, J. Dushoff, R. Eftimie and D. J. Earn, Patterns of spread of influenza A in Canada, Proceedings of the Royal Society of London B: Biological Sciences, 280 (2013), 20131174. doi: 10.1098/rspb.2013.1174.
      K. S. Hickmann , G. Fairchild , R. Priedhorsky , N. Generous , J. M. Hyman , A. Deshpande  and  S. Y. Del Valle , Forecasting the 2013-2014 influenza season using wikipedia, PLoS Comput Biol, 11 (2015) , e1004239.  doi: 10.1371/journal.pcbi.1004239.
      A. Hyder, D. L. Buckeridge and B. Leung, Predictive validation of an influenza spread model PloS one, 8 (2013), e65459. doi: 10.1371/journal.pone.0065459.
      Y. G. Ivannikov and A. T. Ismagulov, Epidemiologiya Grippa (The Epidemiology of Influenza), Almaty, Kazakhstan, 1983, In Russian.
      Y. Ivannikov  and  P. Ogarkov , An experience of mathematical computing forecasting of the influenza epidemics for big territory, Journal of Infectology, 4 (2012) , 101-106. 
      V. N. Leonenko  and  S. V. Ivanov , Fitting the SEIR model of seasonal influenza outbreak to the incidence data for Russian cities, Russian Journal of Numerical Analysis and Mathematical Modelling, 31 (2016) , 267-279.  doi: 10.1515/rnam-2016-0026.
      V. N. Leonenko , S. V. Ivanov  and  Y. K. Novoselova , A computational approach to investigate patterns of acute respiratory illness dynamics in the regions with distinct seasonal climate transitions, Procedia Computer Science, 80 (2016) , 2402-2412.  doi: 10.1016/j.procs.2016.05.538.
      V. N. Leonenko , Y. K. Novoselova  and  K. M. Ong , Influenza outbreaks forecasting in Russian cities: Is Baroyan-Rvachev approach still applicable?, Procedia Computer Science, 101 (2016) , 282-291.  doi: 10.1016/j.procs.2016.11.033.
      V. N. Leonenko , N. V. Pertsev  and  M. Artzrouni , Using high performance algorithms for the hybrid simulation of disease dynamics on CPU and GPU, Procedia Computer Science, 51 (2015) , 150-159.  doi: 10.1016/j.procs.2015.05.214.
      D. C. Liu  and  J. Nocedal , On the limited memory bfgs method for large scale optimization, Mathematical programming, 45 (1989) , 503-528.  doi: 10.1007/BF01589116.
      A. Romanyukha , T. Sannikova  and  I. Drynov , The origin of acute respiratory epidemics, Herald of the Russian Academy of Sciences, 81 (2011) , 31-34.  doi: 10.1134/S1019331611010114.
      L. A. Rvachev  and  I. M. Longini , A mathematical model for the global spread of influenza, Mathematical Biosciences, 75 (1985) , 1-22.  doi: 10.1016/0025-5564(85)90063-X.
      J. Shaman, V. E. Pitzer, C. Viboud, B. T. Grenfell and M. Lipsitch, Absolute humidity and the seasonal onset of influenza in the continental United States, PLoS Biol, 8 (2010), e1000316.
      J. Tamerius , M. I. Nelson , S. Z. Zhou , C. Viboud , M. A. Miller  and  W. J. Alonso , Global influenza seasonality: Reconciling patterns across temperate and tropical regions, Environmental Health Perspectives, 119 (2011) , 439-445.  doi: 10.1289/ehp.1002383.
      J. Truscott , C. Fraser , S. Cauchemez , A. Meeyai , W. Hinsley , C. A. Donnelly , A. Ghani  and  N. Ferguson , Essential epidemiological mechanisms underpinning the transmission dynamics of seasonal influenza, Journal of The Royal Society Interface, 9 (2011) , 304-312.  doi: 10.1098/rsif.2011.0309.
      S. P. van Noort , R. Águas , S. Ballesteros  and  M. G. M. Gomes , The role of weather on the relation between influenza and influenza-like illness, Journal of Theoretical Biology, 298 (2012) , 131-137. 
      C. Viboud , O. N. Bjornstad , D. L. Smith , L. Simonsen , M. A. Miller  and  B. T. Grenfell , Synchrony, waves, and spatial hierarchies in the spread of influenza, Science, 312 (2006) , 447-451.  doi: 10.1126/science.1125237.
      WHO, Influenza (seasonal). Fact sheet No. 211, March 2014. , [online], http://www.who.int/mediacentre/factsheets/fs211/en/.
      WHO, Surveillance case definitions for ILI and SARI, [online], http://www.who.int/influenza/surveillance_monitoring/ili_sari_surveillance_case_definition/en/.
      R. Yaari, G. Katriel, A. Huppert, J. Axelsen and L. Stone, Modelling seasonal influenza: The role of weather and punctuated antigenic drift, Journal of The Royal Society Interface, 10 (2013), 20130298. doi: 10.1098/rsif.2013.0298.
      W. Yang, B. J. Cowling, E. H. Lau and J. Shaman, Forecasting influenza epidemics in hong kong, PLoS Comput Biol, 11 (2015), e1004383. doi: 10.1371/journal.pcbi.1004383.
  • 加载中

Figures(10)

Tables(3)

SHARE

Article Metrics

HTML views(619) PDF downloads(492) Cited by(0)

Access History

Other Articles By Authors

  • on this site
  • on Google Scholar

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return