[1]
|
S. Aland, H. Hatzikirou, J. Lowengrub and A. Voigt, A mechanistic collective cell model for epithelial colony growth and contact inhibition, Biophysical Journal, 109 (2015), 1347-1357.
|
[2]
|
R. K. Banerjee, W. W. van Osdol, P. M. Bungay, C. Sung and R. L. Dedrick, Finite element model of antibody penetration in a prevascular tumor nodule embedded in normal tissue, Journal of Controlled Release, 74 (2001), 193-202.
doi: 10.1016/S0168-3659(01)00317-0.
|
[3]
|
S. Breslin and L. O'Driscoll, Three-dimensional cell culture: The missing link in drug discovery, Drug Discovery Today, 18 (2013), 240-249.
doi: 10.1016/j.drudis.2012.10.003.
|
[4]
|
G. W. Brodland, Computational modeling of cell sorting, tissue engulfment, and related phenomena: A review, Applied Mechanics Reviews, 57 (2004), 47-76.
|
[5]
|
G. W. Brodland, D. Viens and J. H. Veldhuis, A new cell-based fe model for the mechanics of embryonic epithelia, Computer Methods in Biomechanics and Biomedical Engineering, 10 (2007), 121-128.
|
[6]
|
J. C. Butcher,
Numerical Methods for Ordinary Differential Equations John Wiley & Sons, 2016.
doi: 10.1002/9781119121534.
|
[7]
|
L. L. Campbell and K. Polyak, et al., Breast tumor heterogeneity: Cancer stem cells or clonal evolution?, Cell Cycle, 6 (2007), 2332-2338.
doi: 10.4161/cc.6.19.4914.
|
[8]
|
J. Casciari, S. Sotirchos and R. Sutherland, Mathematical modelling of microenvironment and growth in emt6/ro multicellular tumour spheroids, Cell Proliferation, 25 (1992), 1-22.
doi: 10.1111/j.1365-2184.1992.tb01433.x.
|
[9]
|
J. Casciari, S. Sotirchos and R. Sutherland, Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular ph, Journal of Cellular Physiology, 151 (1992), 386-394.
doi: 10.1002/jcp.1041510220.
|
[10]
|
P. Cirri and P. Chiarugi, Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression, Cancer and Metastasis Reviews, 31 (2012), 195-208.
doi: 10.1007/s10555-011-9340-x.
|
[11]
|
J. C. Dallon and H. G. Othmer, How cellular movement determines the collective force generated by the Dictyostelium discoideum slug, J. Theor. Biol., 231 (2004), 203-222.
doi: 10.1016/j.jtbi.2004.06.015.
|
[12]
|
T. S. Deisboeck, Z. Wang, P. Macklin and V. Cristini, Multiscale cancer modeling, Ann. Rev. Biomed. Eng., 13 (2011), 127-155.
|
[13]
|
M. J. Dorie, R. F. Kallman and M. A. Coyne, Effect of cytochalasin b, nocodazole and irradiation on migration and internalization of cells and microspheres in tumor cell spheroids, Experimental Cell Research, 166 (1986), 370-378.
doi: 10.1016/0014-4827(86)90483-0.
|
[14]
|
M. J. Dorie, R. F. Kallman, D. F. Rapacchietta, D. Van Antwerp and Y. R. Huang, Migration and internalization of cells and polystyrene microspheres in tumor cell spheroids, Experimental Cell Research, 141 (1982), 201-209.
doi: 10.1016/0014-4827(82)90082-9.
|
[15]
|
D. Drasdo and S. Höhme, A single-cell-based model of tumor growth in vitro: Monolayers and spheroids, Physical Biology, 2 (2005), 133-147.
doi: 10.1088/1478-3975/2/3/001.
|
[16]
|
D. Duguay, R. A. Foty and M. S. Steinberg, Cadherin-mediated cell adhesion and tissue segregation: Qualitative and quantitative determinants, Developmental Biology, 253 (2003), 309-323.
doi: 10.1016/S0012-1606(02)00016-7.
|
[17]
|
K. Erbertseder, J. Reichold, B. Flemisch, P. Jenny and R. Helmig, A coupled discrete/continuum model for describing cancer-therapeutic transport in the lung PloS One 7 (2012), e31966.
doi: 10.1371/journal.pone.0031966.
|
[18]
|
E. Evans, Detailed mechanics of membrane-membrane adhesion and separation. ii. discrete kinetically trapped molecular cross-bridges, Biophysical Journal, 48 (1985), 185-192.
doi: 10.1016/S0006-3495(85)83771-1.
|
[19]
|
E. A. Evans, Detailed mechanics of membrane-membrane adhesion and separation. i. continuum of molecular cross-bridges, Biophysical Journal, 48 (1985), 175-183.
doi: 10.1016/S0006-3495(85)83770-X.
|
[20]
|
E. M. Felipe De Sousa, L. Vermeulen, E. Fessler and J. P. Medema, Cancer heterogeneity-a multifaceted view, EMBO Reports, 14 (2013), 686-695.
|
[21]
|
T. Fiaschi and P. Chiarugi, Oxidative stress, tumor microenvironment, and metabolic reprogramming: A diabolic liaison International Journal of Cell Biology 2012 (2012), Article ID 762825, 8pp.
doi: 10.1155/2012/762825.
|
[22]
|
R. A. Foty and M. S. Steinberg, Cadherin-mediated cell-cell adhesion and tissue segregation in relation to malignancy, International Journal of Developmental Biology, 48 (2004), 397-409.
doi: 10.1387/ijdb.041810rf.
|
[23]
|
R. A. Foty and M. S. Steinberg, The differential adhesion hypothesis: A direct evaluation, Developmental Biology, 278 (2005), 255-263.
doi: 10.1016/j.ydbio.2004.11.012.
|
[24]
|
R. A. Foty and M. S. Steinberg, Differential adhesion in model systems, Wiley Interdisciplinary Reviews: Developmental Biology, 2 (2013), 631-645.
doi: 10.1002/wdev.104.
|
[25]
|
J. Freyer and R. Sutherland, A reduction in the in situ rates of oxygen and glucose consumption of cells in emt6/ro spheroids during growth, Journal of Cellular Physiology, 124 (1985), 516-524.
doi: 10.1002/jcp.1041240323.
|
[26]
|
J. Galle, G. Aust, G. Schaller, T. Beyer and D. Drasdo, Individual cell-based models of the spatial-temporal organization of multicellular systems-achievements and limitations, Cytometry Part A, 69 (2006), 704-710.
doi: 10.1002/cyto.a.20287.
|
[27]
|
D. Garrod and M. Steinberg, Tissue-specific sorting-out in two dimensions in relation to contact inhibition of cell movement, Nature, 244 (1973), 568-569.
doi: 10.1038/244568a0.
|
[28]
|
P. Gerlee and A. R. Anderson, An evolutionary hybrid cellular automaton model of solid tumour growth, Journal of Theoretical Biology, 246 (2007), 583-603.
doi: 10.1016/j.jtbi.2007.01.027.
|
[29]
|
M. Gerlinger, A. J. Rowan, S. Horswell, J. Larkin, D. Endesfelder, E. Gronroos, P. Martinez, N. Matthews, A. Stewart and P. Tarpey, et al., Intratumor heterogeneity and branched evolution revealed by multiregion sequencing, New England Journal of Medicine, 366 (2012), 883-892.
doi: 10.1056/NEJMoa1113205.
|
[30]
|
R. H. Grantab and I. F. Tannock, Penetration of anticancer drugs through tumour tissue as a function of cellular packing density and interstitial fluid pressure and its modification by bortezomib BMC Cancer 12 (2012), 214.
doi: 10.1186/1471-2407-12-214.
|
[31]
|
J. B. Green, Sophistications of cell sorting, Nature Cell Biology, 10 (2008), 375-377.
doi: 10.1038/ncb0408-375.
|
[32]
|
E. Hairer, S. Norsett and G. Wanner,
Solving Ordinary Differential Equations I: Nonstiff Problems, Second edition. Springer Series in Computational Mathematics, 8. Springer-Verlag, Berlin, 1993.
|
[33]
|
J. W. Haycock, 3d cell culture: A review of current approaches and techniques, 3D Cell Culture, 695 (2010), 1-15.
doi: 10.1007/978-1-60761-984-0_1.
|
[34]
|
G. Helmlinger, P. A. Netti, H. C. Lichtenbeld, R. J. Melder and R. K. Jain, Solid stress inhibits the growth of multicellular tumor spheroids, Nature Biotechnology, 15 (1997), 778-783.
doi: 10.1038/nbt0897-778.
|
[35]
|
F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser and L. A. Kunz-Schughart, Multicellular tumor spheroids: An underestimated tool is catching up again, Journal of Biotechnology, 148 (2010), 3-15.
doi: 10.1016/j.jbiotec.2010.01.012.
|
[36]
|
M. S. Hutson, G. W. Brodland, J. Yang and D. Viens, Cell sorting in three dimensions: Topology, fluctuations, and fluidlike instabilities Physical Review Letters 101 (2008), 148105.
doi: 10.1103/PhysRevLett.101.148105.
|
[37]
|
J. N. Jennings,
A New Computational Model for Multi-cellular Biological Systems PhD thesis, University of Cambridge, 2014.
|
[38]
|
Y. Jiang, H. Levine and J. Glazier, Possible cooperation of differential adhesion and chemotaxis in mound formation of dictyostelium, Biophysical Journal, 75 (1998), 2615-2625.
doi: 10.1016/S0006-3495(98)77707-0.
|
[39]
|
Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell and J. P. Freyer, A multiscale model for avascular tumor growth, Biophysical journal, 89 (2005), 3884-3894.
doi: 10.1529/biophysj.105.060640.
|
[40]
|
K. Kendall, Adhesion: Molecules and mechanics, Science, 263 (1994), 1720-1725.
doi: 10.1126/science.263.5154.1720.
|
[41]
|
Z. I. Khamis, Z. J. Sahab and Q. X. A. Sang, Active roles of tumor stroma in breast cancer metastasis International Journal of Breast Cancer 2012 (2012), Article ID 574025, 10pp.
doi: 10.1155/2012/574025.
|
[42]
|
Y. Kim, M. Stolarska and H. Othmer, The role of the microenvironment in tumor growth and invasion, Progress in Biophysics and Molecular Biology, 106 (2011), 353-379.
doi: 10.1016/j.pbiomolbio.2011.06.006.
|
[43]
|
Y. Kim and H. G. Othmer, A hybrid model of tumor-stromal interactions in breast cancer, Bull. Math. Biol., 75 (2013), 1304-1350.
doi: 10.1007/s11538-012-9787-0.
|
[44]
|
Y. KIM and S. ROH, A hybrid model for cell proliferation and migration in glioblastoma, Discrete & Continuous Dynamical Systems-Series B, 18 (2013), 969-1015.
doi: 10.3934/dcdsb.2013.18.969.
|
[45]
|
Y. Kim, M. A. Stolarska and H. G. Othmer, A hybrid model for tumor spheroid growth in vitro i: Theoretical development and early results, Mathematical Models and Methods in Applied Sciences, 17 (2007), 1773-1798.
doi: 10.1142/S0218202507002479.
|
[46]
|
L. C. Kimlin, G. Casagrande and V. M. Virador, In vitro three-dimensional (3d) models in cancer research: An update, Molecular Carcinogenesis, 52 (2013), 167-182.
doi: 10.1002/mc.21844.
|
[47]
|
T. Lecuit and P.-F. Lenne, Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis, Nature Reviews Molecular Cell Biology, 8 (2007), 633-644.
doi: 10.1038/nrm2222.
|
[48]
|
X.-F. Li, S. Carlin, M. Urano, J. Russell, C. C. Ling and J. A. O'Donoghue, Visualization of hypoxia in microscopic tumors by immunofluorescent microscopy, Cancer Research, 67 (2007), 7646-7653.
doi: 10.1158/0008-5472.CAN-06-4353.
|
[49]
|
D. Loessner, J. P. Little, G. J. Pettet and D. W. Hutmacher, A multiscale road map of cancer spheroids-incorporating experimental and mathematical modelling to understand cancer progression, J Cell Sci, 126 (2013), 2761-2771.
doi: 10.1242/jcs.123836.
|
[50]
|
P. Macklin, S. McDougall, A. R. Anderson, M. A. Chaplain, V. Cristini and J. Lowengrub, Multiscale modelling and nonlinear simulation of vascular tumour growth, Journal of Mathematical Biology, 58 (2009), 765-798.
doi: 10.1007/s00285-008-0216-9.
|
[51]
|
J.-L. Maître, H. Berthoumieux, S. F. G. Krens, G. Salbreux, F. Jülicher, E. Paluch and C.-P. Heisenberg, Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells, Science, 338 (2012), 253-256.
|
[52]
|
M. Martins, S. Ferreira and M. Vilela, Multiscale models for the growth of avascular tumors, Physics of Life Reviews, 4 (2007), 128-156.
doi: 10.1016/j.plrev.2007.04.002.
|
[53]
|
A. Marusyk, V. Almendro and K. Polyak, Intra-tumour heterogeneity: A looking glass for cancer?, Nature Reviews Cancer, 12 (2012), 323-334.
doi: 10.1038/nrc3261.
|
[54]
|
D. McElwain and G. Pettet, Cell migration in multicell spheroids: Swimming against the tide, Bulletin of Mathematical Biology, 55 (1993), 655-674.
|
[55]
|
E. Méhes, E. Mones, V. Németh and T. Vicsek, Collective motion of cells mediates segregation and pattern formation in co-cultures,
PloS One 7.
|
[56]
|
L. M. F. Merlo, J. W. Pepper, B. J. Reid and C. C. Maley, Cancer as an evolutionary and ecological process, Nature Reviews Cancer, 6 (2006), 924-935.
doi: 10.1038/nrc2013.
|
[57]
|
D. Miller, Sugar uptake as a function of cell volume in human erythrocytes, The Journal of Physiology, 170 (1964), 219-225.
doi: 10.1113/jphysiol.1964.sp007325.
|
[58]
|
W. F. Mueller-Klieser and R. M. Sutherland, Oxygen consumption and oxygen diffusion properties of multicellular spheroids from two different cell lines, in Oxygen Transport to Tissue-VI , Springer, 180 (1984), 311-321.
doi: 10.1007/978-1-4684-4895-5_30.
|
[59]
|
S. M. Mumenthaler, J. Foo, N. C. Choi, N. Heise, K. Leder, D. B. Agus, W. Pao, F. Michor and P. Mallick, The impact of microenvironmental heterogeneity on the evolution of drug resistance in cancer cells, Cancer Informatics, 14 (2015), 19-31.
|
[60]
|
S. Mumenthaler, J. Foo, K. Leder, N. Choi, D. Agus, W. Pao, P. Mallick and F. Michor, Evolutionary modeling of combination treatment strategies to overcome resistance to tyrosine kinase inhibitors in non-small cell lung cancer, Molecular Pharmaceutics, 8 (2011), 2069-2079.
doi: 10.1021/mp200270v.
|
[61]
|
T. J. Newman, Modeling multi-cellular systems using sub-cellular elements, Math. Biosci. Eng., 2 (2005), 613–624, arXiv preprint q-bio/0504028.
doi: 10.3934/mbe.2005.2.613.
|
[62]
|
H. Ninomiya, R. David, E. W. Damm, F. Fagotto, C. M. Niessen and R. Winklbauer, Cadherin-dependent differential cell adhesion in xenopus causes cell sorting in vitro but not in the embryo, Journal of Cell Science, 125 (2012), 1877-1883.
|
[63]
|
E. Palsson, A three-dimensional model of cell movement in multicellular systems, Future Generation Computer Systems, 17 (2001), 835-852.
doi: 10.1016/S0167-739X(00)00062-5.
|
[64]
|
E. Palsson, A 3-d model used to explore how cell adhesion and stiffness affect cell sorting and movement in multicellular systems, Journal of Theoretical Biology, 254 (2008), 1-13.
doi: 10.1016/j.jtbi.2008.05.004.
|
[65]
|
E. Palsson and H. G. Othmer, A model for individual and collective cell movement in dictyostelium discoideum, Proceedings of the National Academy of Sciences, 97 (2000), 10448-10453.
|
[66]
|
G. Pettet, C. Please, M. Tindall and D. McElwain, The migration of cells in multicell tumor spheroids, Bulletin of Mathematical Biology, 63 (2001), 231-257.
doi: 10.1006/bulm.2000.0217.
|
[67]
|
K. Polyak, Heterogeneity in breast cancer,
The Journal of Clinical Investigation 121 (2011), 3786.
|
[68]
|
N. J. Poplawski, U. Agero, J. S. Gens, M. Swat, J. A. Glazier and A. R. Anderson, Front instabilities and invasiveness of simulated avascular tumors, Bulletin of Mathematical Biology, 71 (2009), 1189-1227.
doi: 10.1007/s11538-009-9399-5.
|
[69]
|
A. Quarteroni, R. Sacco and F. Saleri,
Matematica Numerica Springer Science & Business Media, 1998.
|
[70]
|
A. A. Qutub, F. M. Gabhann, E. D. Karagiannis, P. Vempati and A. S. Popel, Multiscale models of angiogenesis, Engineering in Medicine and Biology Magazine, IEEE, 28 (2009), 14-31.
doi: 10.1109/MEMB.2009.931791.
|
[71]
|
K. A. Rejniak and R. H. Dillon, A single cell-based model of the ductal tumour microarchitecture, Computational and Mathematical Methods in Medicine, 8 (2007), 51-69.
doi: 10.1080/17486700701303143.
|
[72]
|
T. Roose, P. A. Netti, L. L. Munn, Y. Boucher and R. K. Jain, Solid stress generated by spheroid growth estimated using a linear poroelastisity model, Microvascular Research, 66 (2003), 204-212.
|
[73]
|
G. Schaller and M. Meyer-Hermann, Multicellular tumor spheroid in an off-lattice voronoi-delaunay cell model Physical Review E 71 (2005), 051910, 16pp.
doi: 10.1103/PhysRevE.71.051910.
|
[74]
|
G. Schaller and M. Meyer-Hermann, Continuum versus discrete model: a comparison for multicellular tumour spheroids, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 364 (2006), 1443-1464.
doi: 10.1098/rsta.2006.1780.
|
[75]
|
E.-M. Schötz, R. D. Burdine, F. Jülicher, M. S. Steinberg, C.-P. Heisenberg and R. A. Foty, Quantitative differences in tissue surface tension influence zebrafish germ layer positioning, HFSP journal, 2 (2008), 42-56.
|
[76]
|
R. Shipley and S. Chapman, Multiscale modelling of fluid and drug transport in vascular tumours, Bulletin of Mathematical Biology, 72 (2010), 1464-1491.
doi: 10.1007/s11538-010-9504-9.
|
[77]
|
A. Shirinifard, J. S. Gens, B. L. Zaitlen, N. J. Poplawski, M. Swat and J. A. Glazier, 3d multi-cell simulation of tumor growth and angiogenesis PloS One 4 (2009), e7190.
doi: 10.1371/journal.pone.0007190.
|
[78]
|
K. Smalley, M. Lioni and M. Herlyn, Life ins't flat: Taking cancer biology to the next dimension, In Vitro Cellular & Developmental Biology-Animal, 42 (2006), 242-247.
|
[79]
|
A. Starzec, D. Briane, M. Kraemer, J.-C. Kouyoumdjian, J.-L. Moretti, R. Beaupain and O. Oudar, Spatial organization of three-dimensional cocultures of adriamycin-sensitive and-resistant human breast cancer mcf-7 cells, Biology of the Cell, 95 (2003), 257-264.
doi: 10.1016/S0248-4900(03)00051-0.
|
[80]
|
M. S. Steinberg, Reconstruction of tissues by dissociated cells, Science, 141 (1963), 401-408.
doi: 10.1126/science.141.3579.401.
|
[81]
|
M. S. Steinberg, Adhesion in development: An historical overview, Developmental Biology, 180 (1996), 377-388.
doi: 10.1006/dbio.1996.0312.
|
[82]
|
M. Steinberg and D. Garrod, Observations on the sorting-out of embryonic cells in monolayer culture, Journal of Cell Science, 18 (1975), 385-403.
|
[83]
|
M. A. Stolarska, Y. Kim and H. G. Othmer, Multi-scale models of cell and tissue dynamics, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 367 (2009), 3525-3553.
doi: 10.1098/rsta.2009.0095.
|
[84]
|
K. Sung, C. Dong, G. Schmid-Schönbein, S. Chien and R. Skalak, Leukocyte relaxation properties, Biophysical Journal, 54 (1988), 331-336.
doi: 10.1016/S0006-3495(88)82963-1.
|
[85]
|
M. H. Swat, S. D. Hester, R. W. Heiland, B. L. Zaitlen, J. A. Glazier and A. Shirinifard, Compucell3d manual and tutorial version 3. 5. 0.
|
[86]
|
G. Taraboletti, D. D. Roberts and L. A. Liotta, Thrombospondin-induced tumor cell migration: Haptotaxis and chemotaxis are mediated by different molecular domains, The Journal of Cell Biology, 105 (1987), 2409-2415.
doi: 10.1083/jcb.105.5.2409.
|
[87]
|
K. Thompson and H. Byrne, Modelling the internalization of labelled cells in tumour spheroids, Bulletin of Mathematical Biology, 61 (1999), 601-623.
doi: 10.1006/bulm.1999.0089.
|
[88]
|
P. L. Townes and J. Holtfreter, Directed movements and selective adhesion of embryonic amphibian cells, Journal of Experimental Zoology, 128 (1955), 53-120.
doi: 10.1002/jez.1401280105.
|
[89]
|
G. Wayne Brodland and H. H. Chen, The mechanics of cell sorting and envelopment, Journal of Biomechanics, 33 (2000), 845-851.
|
[90]
|
D. G. Wilkinson, How attraction turns to repulsion, Nature Cell Biology, 5 (2003), 851-853.
doi: 10.1038/ncb1003-851.
|
[91]
|
M. Zanoni, F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua and A. Tesei, 3d tumor spheroid models for in vitro therapeutic screening: A systematic approach to enhance the biological relevance of data obtained Scientific Reports 6 (2016), 19103.
doi: 10.1038/srep19103.
|
[92]
|
Y. Zhang, G. Thomas, M. Swat, A. Shirinifard and J. Glazier, Computer simulations of cell sorting due to differential adhesion PloS One 6 (2011), e24999.
doi: 10.1371/journal.pone.0024999.
|
[93]
|
M. Zimmermann, C. Box and S. A. Eccles, Two-dimensional vs. three-dimensional in vitro tumor migration and invasion assays, in Target Identification and Validation in Drug Discovery, Springer, (2013), 227-252.
doi: 10.1007/978-1-62703-311-4_15.
|