April  2018, 15(2): 393-406. doi: 10.3934/mbe.2018017

Effect of rotational grazing on plant and animal production

1. 

Jamestown High School, Williamsburg, VA 23185, USA,

2. 

Department of Mathematics, College of William and Mary, Williamsburg, VA 23187-8795, USA

* Corresponding author: Junping Shi.

Received  September 16, 2017 Accepted  April 23, 2017 Published  June 2017

Fund Project: The second author is supported by NSF grant DMS-1313243.

It is a common understanding that rotational cattle grazing provides better yields than continuous grazing, but a quantitative analysis is lacking in agricultural literature. In rotational grazing, cattle periodically move among paddocks in contrast to continuous grazing, in which the cattle graze on a single plot for the entire grazing season. We construct a differential equation model of vegetation grazing on a fixed area to show that production yields and stockpiled forage are greater for rotational grazing than continuous grazing. Our results show that both the number of cattle per acre and stockpiled forage increase for many rotational configurations.

Citation: Mayee Chen, Junping Shi. Effect of rotational grazing on plant and animal production. Mathematical Biosciences & Engineering, 2018, 15 (2) : 393-406. doi: 10.3934/mbe.2018017
References:
[1]

How Much Feed Will My Cow Eat? Alberta Agricultural and Rural Development Edmonton, Alberta, 2003, Available from: http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/faq7811

[2]

Raising Cattle for Beef Production and Beef Safety, Cattlemen's Beef Board and National Cattlemen's Beef Association, Centennial, Colorado, 2013, Available from: http://www.explorebeef.org/raisingbeef.aspx

[3]

Using the Animal Unit Month (AUM) Effectively, Alberta Agricultural and Rural Development, Edmonton, Alberta, 2001, Available from: http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex1201

[4]

L. I. AniţaS. Aniţa and V. Arnăutu, Global behavior for an age-dependent population model with logistic term and periodic vital rates, Appl. Math. Comput., 206 (2008), 368-379.  doi: 10.1016/j.amc.2008.09.016.

[5]

L. I. AniţaS. Aniţa and V. Arnăutu, Optimal harvesting for periodic age-dependent population dynamics with logistic term, Appl. Math. Comput., 215 (2009), 2701-2715.  doi: 10.1016/j.amc.2009.09.010.

[6]

S. K. Bamhart, Estimating available pasture forage, Iowa State University Extension College of Agriculture, Ames, Iowa, 2009.

[7]

S. Behringer and T. Upmann, Optimal harvesting of a spatial renewable resource, J. Econ. Dyn. Control., 42 (2014), 105-120.  doi: 10.1016/j.jedc.2014.03.008.

[8]

A. O. BelyakovA. A. Davydov and V. M. Veliov, Optimal cyclic exploitation of renewable resources, J. Dyn. Control Syst., 21 (2015), 475-494.  doi: 10.1007/s10883-015-9271-x.

[9]

A. O. Belyakov and V. M. Veliov, Constant versus periodic fishing: Age structured optimal control approach, Math. Model. Nat. Phenom., 9 (2014), 20-37.  doi: 10.1051/mmnp/20149403.

[10]

Briske and Rotational grazing on rangelands: Reconciliation of perception, Rotational grazing on rangelands: Reconciliation of perception and experimental evidence, Rang. Ecol. & Mana., 61 (2008), 3-17.  doi: 10.2111/06-159R.1.

[11]

L. FuT. BoG. Du and X. Zheng, Modeling the responses of grassland vegetation coverage to grazing disturbance in an alpine meadow, Ecol. Modelling, 247 (2012), 221-232.  doi: 10.1016/j.ecolmodel.2012.08.027.

[12]

R. K. HeitschmidtS. L. Dowhower and J. W. Walker, 14-vs. 42-paddock rotational grazing: Aboveground biomass dynamics, forage production, and harvest efficiency, Jour. Range Mana., 40 (1987), 216-223.  doi: 10.2307/3899082.

[13]

C. S. Holling, Some characteristics of simple types of predation and parasitism, The Canadian Entomologist, 91 (1959), 385-398.  doi: 10.4039/Ent91385-7.

[14]

C. Hurtado-UriaD. HennessyL. ShallooR. SchulteL. Delaby and D. O'Connor, Evaluation of three grass growth models to predict grass growth in Ireland, Jour. Agri. Sci., 151 (2013), 91-104.  doi: 10.1017/S0021859612000317.

[15]

I. R. JohnsonT. E. Ameziane and J. H. M. Thornley, A model of grass growth, Annals of Botany, 51 (1983), 599-609.  doi: 10.1093/oxfordjournals.aob.a086506.

[16]

R. Kallenbach, Calculating stocking rates of cows, High Plains Journal, 2010.

[17]

R. Lemus, Developing a grazing system, Mississippi State University Extension, Mississippi State, Mississippi, 2008.

[18]

R. M. May, Thresholds and breakpoints in ecosystems with a multiplicity of stable states, Nature, 269 (1977), 471-477.  doi: 10.1038/269471a0.

[19]

I. Noy-Meir, Stability of grazing systems: An application of predator-prey graphs, The Journal of Ecology, 63 (1975), 459-481.  doi: 10.2307/2258730.

[20]

I. Noy-Meir, Rotational grazing in a continuously growing pasture: A simple model, Agri. Systems., 1 (1976), 87-112.  doi: 10.1016/0308-521X(76)90009-3.

[21]

E. B. Rayburn, Number and size of paddocks in a grazing system, West Virginia University Extension Service, Morgantown, West Virginia. 1992.

[22]

J. P. RittenW. M. FrasierC. T. Bastian and S. T. Gray, Optimal rangeland stocking decisions under stochastic and climate-impacted weather, Amer. Jour. Agri. Econ., 92 (2010), 1242-1255.  doi: 10.1093/ajae/aaq052.

[23]

A. Savory and D. P. Stanley, The Savory grazing method, Rangelands, 2 (1980), 234-237. 

[24]

N. F. Sayre, Viewpoint: The need for qualitative research to understand ranch management, Rang. Ecol. & Mana., 57 (2004), 668-674. 

[25]

M. Scheffer, Critical transitions in nature and society, Princeton University Press, Princeton, New Jersey, 2009.

[26]

M. SchefferS. CarpenterJ. A. FoleyC. Folke and B. Walker, Catastrophic shifts in ecosystems, Nature, 413 (2001), 591-596.  doi: 10.1038/35098000.

[27]

R. Smith, G. Lacefield, R. Burris, D. Ditsch, B. Coleman, J. Lehmkuhler and J. Henning, Rotational grazing, University of Kentucky College of Agriculture; Lexington, Kentucky, 2011.

[28]

J. Sprinkle and D. Bailey, How many animals can I graze on my pasture?, The University of Arizona Cooperative Extension, Tucson, Arizona, 2004.

show all references

References:
[1]

How Much Feed Will My Cow Eat? Alberta Agricultural and Rural Development Edmonton, Alberta, 2003, Available from: http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/faq7811

[2]

Raising Cattle for Beef Production and Beef Safety, Cattlemen's Beef Board and National Cattlemen's Beef Association, Centennial, Colorado, 2013, Available from: http://www.explorebeef.org/raisingbeef.aspx

[3]

Using the Animal Unit Month (AUM) Effectively, Alberta Agricultural and Rural Development, Edmonton, Alberta, 2001, Available from: http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex1201

[4]

L. I. AniţaS. Aniţa and V. Arnăutu, Global behavior for an age-dependent population model with logistic term and periodic vital rates, Appl. Math. Comput., 206 (2008), 368-379.  doi: 10.1016/j.amc.2008.09.016.

[5]

L. I. AniţaS. Aniţa and V. Arnăutu, Optimal harvesting for periodic age-dependent population dynamics with logistic term, Appl. Math. Comput., 215 (2009), 2701-2715.  doi: 10.1016/j.amc.2009.09.010.

[6]

S. K. Bamhart, Estimating available pasture forage, Iowa State University Extension College of Agriculture, Ames, Iowa, 2009.

[7]

S. Behringer and T. Upmann, Optimal harvesting of a spatial renewable resource, J. Econ. Dyn. Control., 42 (2014), 105-120.  doi: 10.1016/j.jedc.2014.03.008.

[8]

A. O. BelyakovA. A. Davydov and V. M. Veliov, Optimal cyclic exploitation of renewable resources, J. Dyn. Control Syst., 21 (2015), 475-494.  doi: 10.1007/s10883-015-9271-x.

[9]

A. O. Belyakov and V. M. Veliov, Constant versus periodic fishing: Age structured optimal control approach, Math. Model. Nat. Phenom., 9 (2014), 20-37.  doi: 10.1051/mmnp/20149403.

[10]

Briske and Rotational grazing on rangelands: Reconciliation of perception, Rotational grazing on rangelands: Reconciliation of perception and experimental evidence, Rang. Ecol. & Mana., 61 (2008), 3-17.  doi: 10.2111/06-159R.1.

[11]

L. FuT. BoG. Du and X. Zheng, Modeling the responses of grassland vegetation coverage to grazing disturbance in an alpine meadow, Ecol. Modelling, 247 (2012), 221-232.  doi: 10.1016/j.ecolmodel.2012.08.027.

[12]

R. K. HeitschmidtS. L. Dowhower and J. W. Walker, 14-vs. 42-paddock rotational grazing: Aboveground biomass dynamics, forage production, and harvest efficiency, Jour. Range Mana., 40 (1987), 216-223.  doi: 10.2307/3899082.

[13]

C. S. Holling, Some characteristics of simple types of predation and parasitism, The Canadian Entomologist, 91 (1959), 385-398.  doi: 10.4039/Ent91385-7.

[14]

C. Hurtado-UriaD. HennessyL. ShallooR. SchulteL. Delaby and D. O'Connor, Evaluation of three grass growth models to predict grass growth in Ireland, Jour. Agri. Sci., 151 (2013), 91-104.  doi: 10.1017/S0021859612000317.

[15]

I. R. JohnsonT. E. Ameziane and J. H. M. Thornley, A model of grass growth, Annals of Botany, 51 (1983), 599-609.  doi: 10.1093/oxfordjournals.aob.a086506.

[16]

R. Kallenbach, Calculating stocking rates of cows, High Plains Journal, 2010.

[17]

R. Lemus, Developing a grazing system, Mississippi State University Extension, Mississippi State, Mississippi, 2008.

[18]

R. M. May, Thresholds and breakpoints in ecosystems with a multiplicity of stable states, Nature, 269 (1977), 471-477.  doi: 10.1038/269471a0.

[19]

I. Noy-Meir, Stability of grazing systems: An application of predator-prey graphs, The Journal of Ecology, 63 (1975), 459-481.  doi: 10.2307/2258730.

[20]

I. Noy-Meir, Rotational grazing in a continuously growing pasture: A simple model, Agri. Systems., 1 (1976), 87-112.  doi: 10.1016/0308-521X(76)90009-3.

[21]

E. B. Rayburn, Number and size of paddocks in a grazing system, West Virginia University Extension Service, Morgantown, West Virginia. 1992.

[22]

J. P. RittenW. M. FrasierC. T. Bastian and S. T. Gray, Optimal rangeland stocking decisions under stochastic and climate-impacted weather, Amer. Jour. Agri. Econ., 92 (2010), 1242-1255.  doi: 10.1093/ajae/aaq052.

[23]

A. Savory and D. P. Stanley, The Savory grazing method, Rangelands, 2 (1980), 234-237. 

[24]

N. F. Sayre, Viewpoint: The need for qualitative research to understand ranch management, Rang. Ecol. & Mana., 57 (2004), 668-674. 

[25]

M. Scheffer, Critical transitions in nature and society, Princeton University Press, Princeton, New Jersey, 2009.

[26]

M. SchefferS. CarpenterJ. A. FoleyC. Folke and B. Walker, Catastrophic shifts in ecosystems, Nature, 413 (2001), 591-596.  doi: 10.1038/35098000.

[27]

R. Smith, G. Lacefield, R. Burris, D. Ditsch, B. Coleman, J. Lehmkuhler and J. Henning, Rotational grazing, University of Kentucky College of Agriculture; Lexington, Kentucky, 2011.

[28]

J. Sprinkle and D. Bailey, How many animals can I graze on my pasture?, The University of Arizona Cooperative Extension, Tucson, Arizona, 2004.

Figure 1.  Left: Growth rate of the grass and consumption rate by the cattle for continuous grazing. Here the growth rate $G(V)$ and the grazing rate $H\cdot c(V)$ are defined as in (2.1) and (2.2), with parameter values given as in Table 1 and $H=1.06$, $0.6$ and $0.2$ respectively. Right: A forage ($V$) versus cattle ($H$) bifurcation diagram for the continuous grazing system
Figure 2.  Illustration of continuous grazing (left), and rotational grazing (right).
Figure 3.  Amount of forage in a sustainable rotational configuration where $3$ out of $4$ paddocks are grazed. Here (2.7) and (2.8) are used for integration, $(n,m,T)=(4,3,10)$, $H=1.3$ and $T_{total}=365$ days.
Figure 4.  Amount of forage in a sustainable rotational configuration where $3$ out of $4$ paddocks are grazed. Here (2.7) and (2.8) are used for integration, $(n,m,T)=(4,3,10)$, $H=1.28$ and $T_{total}=3650$ days.
Figure 5.  Maximum $H$ for different paddock configurations and $T$. Here the horizontal axis is the rotation period $T$, the vertical axis is the maximum sustainable cattle number $H_{max}^R(T)$, and the legend shows $m: n$ (the number of paddocks grazed versus the number of total paddock). The horizontal line is $1.0631$ head of cattle per acre, which is from continuous grazing. Here $T_{total}=365$ is used.
Figure 6.  Maximum $V$ for different paddock configurations and $T$. Here the horizontal axis is the rotation period $T$, the vertical axis is the forage amount $V_S^R(T)$ when achieving the maximum sustainable cattle number $H_{max}^R(T)$, and the key is $m: n$ (the number of paddocks grazed versus the number of total paddock). The horizontal line is the forage amount when achieving the maximum sustainable cattle number $H_{max}$ for continuous grazing.
Figure 7.  Cattle and stockpiled forage plotted against the grazing ratio for a $15$-day rotation period. Here the horizontal axis is the grazing ratio of the rotational scheme, and the vertical axis is the maximum sustainable cattle number $H_{max}^R(T)$ and associated forage amount $V_S^R(T)$.
Table 1.  Table of variables and parameters in the equations.
Variable Meaning Units
$t$ time days
$V_j(t)$ grass biomass in paddock $j$ pounds/acre
Parameter Meaning Units Value Reference
$V_{max}$ grass carrying capacity pounds/acre $2400$ [21]
$g_{max}$ maximum growth rate per capita rate per capita day$^{-1}$ $0.05625$ [14]
$c_{max}$ maximum consumption rate per head of cattle pounds/(acre$\cdot$day) $35$ [1,2]
$K$ half-saturation value pounds/acre $120$
$H_j$ number of cattle per acre in paddock $j$ cattle/acre
Variable Meaning Units
$t$ time days
$V_j(t)$ grass biomass in paddock $j$ pounds/acre
Parameter Meaning Units Value Reference
$V_{max}$ grass carrying capacity pounds/acre $2400$ [21]
$g_{max}$ maximum growth rate per capita rate per capita day$^{-1}$ $0.05625$ [14]
$c_{max}$ maximum consumption rate per head of cattle pounds/(acre$\cdot$day) $35$ [1,2]
$K$ half-saturation value pounds/acre $120$
$H_j$ number of cattle per acre in paddock $j$ cattle/acre
[1]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic and Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[2]

Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259

[3]

Pierre Degond, Maximilian Engel. Numerical approximation of a coagulation-fragmentation model for animal group size statistics. Networks and Heterogeneous Media, 2017, 12 (2) : 217-243. doi: 10.3934/nhm.2017009

[4]

Andrew L. Nevai, Richard R. Vance. The role of leaf height in plant competition for sunlight: analysis of a canopy partitioning model. Mathematical Biosciences & Engineering, 2008, 5 (1) : 101-124. doi: 10.3934/mbe.2008.5.101

[5]

Lijuan Wang, Hongling Jiang, Ying Li. Positive steady state solutions of a plant-pollinator model with diffusion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1805-1819. doi: 10.3934/dcdsb.2015.20.1805

[6]

Jun Zhou. Bifurcation analysis of a diffusive plant-wrack model with tide effect on the wrack. Mathematical Biosciences & Engineering, 2016, 13 (4) : 857-885. doi: 10.3934/mbe.2016021

[7]

Guangyu Sui, Meng Fan, Irakli Loladze, Yang Kuang. The dynamics of a stoichiometric plant-herbivore model and its discrete analog. Mathematical Biosciences & Engineering, 2007, 4 (1) : 29-46. doi: 10.3934/mbe.2007.4.29

[8]

Ya Li, Z. Feng. Dynamics of a plant-herbivore model with toxin-induced functional response. Mathematical Biosciences & Engineering, 2010, 7 (1) : 149-169. doi: 10.3934/mbe.2010.7.149

[9]

Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591

[10]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[11]

Yuanxian Hui, Genghong Lin, Jianshe Yu, Jia Li. A delayed differential equation model for mosquito population suppression with sterile mosquitoes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4659-4676. doi: 10.3934/dcdsb.2020118

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4887-4905. doi: 10.3934/dcdsb.2020317

[13]

Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261

[14]

Eduardo Liz, Cristina Lois-Prados. A note on the Lasota discrete model for blood cell production. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 701-713. doi: 10.3934/dcdsb.2019262

[15]

Juan Gabriel Brida, Gaston Cayssials, Oscar Córdoba Rodríguez, Martín Puchet Anyul. A dynamic extension of the classical model of production prices determination. Journal of Dynamics and Games, 2020, 7 (3) : 185-196. doi: 10.3934/jdg.2020013

[16]

Maolin Cheng, Bin Liu. Application of a modified VES production function model. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2889-2902. doi: 10.3934/jimo.2020099

[17]

Frederic Heihoff. Global mass-preserving solutions for a two-dimensional chemotaxis system with rotational flux components coupled with a full Navier–Stokes equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4703-4719. doi: 10.3934/dcdsb.2020120

[18]

Vincent Choudri, Mathiyazhgan Venkatachalam, Sethuraman Panayappan. Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1153-1172. doi: 10.3934/jimo.2016.12.1153

[19]

Min Tang, Fuying Jing, Xiangrui Chao. A dynamic lot sizing model with production-or-outsourcing decision under minimum production quantities. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2389-2406. doi: 10.3934/jimo.2019059

[20]

Subhendu Ruidas, Mijanur Rahaman Seikh, Prasun Kumar Nayak. A production inventory model for high-tech products involving two production runs and a product variation. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022038

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (474)
  • HTML views (238)
  • Cited by (2)

Other articles
by authors

[Back to Top]