[1]
|
S. F. Bakhoum, G. Genovese and D. A. Compton, Deviant kinetochore microtubule dynamics underlie chromosomal instability, Curr Biol, 19 (2009), 1937-1942.
doi: 10.1016/j.cub.2009.09.055.
|
[2]
|
A. K. Caydasi, B. Ibrahim and G. Pereira, Monitoring spindle orientation: Spindle position checkpoint in charge Cell Div 5 (2010), p28.
doi: 10.1186/1747-1028-5-28.
|
[3]
|
A. K. Caydasi, B. Kurtulmus, M. I. L. Orrico, A. Hofmann, B. Ibrahim and G. Pereira, Elm1 kinase activates the spindle position checkpoint kinase Kin4, J Cell Biol, 190 (2010), 975-989.
doi: 10.1083/jcb.201006151.
|
[4]
|
A. K. Caydasi, M. Lohel, G. Grünert, P. Dittrich, G. Pereira and B. Ibrahim, A dynamical model of the spindle position checkpoint Mol Syst Biol 8 (2012), p582.
doi: 10.1038/msb.2012.15.
|
[5]
|
L. M. Cherry, A. J. Faulkner, L. A. Grossberg and R. Balczon, Kinetochore size variation in mammalian chromosomes: An image analysis study with evolutionary implications, J Cell Sci, 92 (1989), 281-289.
|
[6]
|
E. J. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous systems, Congr Numer, 30 (1981), 265-284.
|
[7]
|
A. Doncic, E. Ben-Jacob and N. Barkai, Evaluating putative mechanisms of the mitotic spindle checkpoint, Proc Natl Acad Sci U S A, 102 (2005), 6332-6337.
doi: 10.1073/pnas.0409142102.
|
[8]
|
B. Ermentrout,
Simulating, Analyzing, and Animating Dynamical Systems: A Guide to Xppaut for Researchers and Students
(society for industrial and applied mathematics, philadelphia), 2002.
doi: 10.1137/1.9780898718195.
|
[9]
|
D. Görlich, G. Escuela, G. Gruenert, P. Dittrich and B. Ibrahim, Molecular codes through complex formation in a model of the human inner kinetochore Biosemiotics 7 (2014), p223.
doi: 10.1007/s12304-013-9193-5.
|
[10]
|
G. Gruenert, B. Ibrahim, T. Lenser, M. Lohel, T. Hinze and P. Dittrich, Rule-based spatial modeling with diffusing, geometrically constrained molecules BMC Bioinf 11 (2010), p307.
doi: 10.1186/1471-2105-11-307.
|
[11]
|
G. Gruenert, J. Szymanski, J. Holley, G. Escuela, A. Diem, B. Ibrahim, A. Adamatzky, J. Gorecki and P. Dittrich, Multi-scale modelling of computers made from excitable chemical droplets, IJUC, 9 (2013), 237-266.
|
[12]
|
R. Henze, J. Huwald, N. Mostajo, P. Dittrich and B. Ibrahim, Structural analysis of in silico mutant experiments of human inner-kinetochore structure, Bio Systems, 127 (2015), 47-59.
doi: 10.1016/j.biosystems.2014.11.004.
|
[13]
|
B. Ibrahim, In silico spatial simulations reveal that MCC formation and excess BubR1 are required for tight inhibition of the anaphase-promoting complex, Mol Biosyst, 11 (2015), 2867-2877.
doi: 10.1039/C5MB00395D.
|
[14]
|
B. Ibrahim, Spindle assembly checkpoint is sufficient for complete Cdc20 sequestering in mitotic control, Comput Struct Biotechnol J, 13 (2015), 320-328.
doi: 10.1016/j.csbj.2015.03.006.
|
[15]
|
B. Ibrahim, Systems biology modeling of five pathways for regulation and potent inhibition of the anaphase-promoting complex (APC/C): Pivotal roles for MCC and BubR1, Omics, 19 (2015), 294-305.
doi: 10.1089/omi.2015.0027.
|
[16]
|
B. Ibrahim, Toward a systems-level view of mitotic checkpoints, Prog Biophys Mol Biol, 117 (2015), 217-224.
doi: 10.1016/j.pbiomolbio.2015.02.005.
|
[17]
|
B. Ibrahim, A mathematical framework for kinetochore-driven activation feedback in the mitotic checkpoint, Bull Math Biol, 79 (2017), 1183-1200.
doi: 10.1007/s11538-017-0278-1.
|
[18]
|
B. Ibrahim, S. Diekmann, E. Schmitt and P. Dittrich, In-silico modeling of the mitotic spindle assembly checkpoint PLoS One 3 (2008), e1555.
doi: 10.1371/journal.pone.0001555.
|
[19]
|
B. Ibrahim, P. Dittrich, S. Diekmann and E. Schmitt, Stochastic effects in a compartmental model for mitotic checkpoint regulation, J Integr Bioinform, 4 (2007), 77-88.
doi: 10.2390/biecoll-jib-2007-66.
|
[20]
|
B. Ibrahim, P. Dittrich, S. Diekmann and E. Schmitt, Mad2 binding is not sufficient for complete Cdc20 sequestering in mitotic transition control (an in silico study), Biophys Chem, 134 (2008), 93-100.
doi: 10.1016/j.bpc.2008.01.007.
|
[21]
|
B. Ibrahim and R. Henze, Active transport can greatly enhance Cdc20:Mad2 formation, Int J Mol Sci, 15 (2014), 19074-19091.
doi: 10.3390/ijms151019074.
|
[22]
|
B. Ibrahim, R. Henze, G. Gruenert, M. Egbert, J. Huwald and P. Dittrich, Spatial rule-based modeling: A method and its application to the human mitotic kinetochore, Cells, 2 (2013), 506-544.
doi: 10.3390/cells2030506.
|
[23]
|
B. Ibrahim, E. Schmitt, P. Dittrich and S. Diekmann, In silico study of kinetochore control, amplification, and inhibition effects in MCC assembly, Bio Systems, 95 (2009), 35-50.
doi: 10.1016/j.biosystems.2008.06.007.
|
[24]
|
G. J. Kops, B. A. Weaver and D. W. Cleveland, On the road to cancer: Aneuploidy and the mitotic checkpoint, Nat Rev Cancer, 5 (2005), 773-785.
doi: 10.1038/nrc1714.
|
[25]
|
P. Kreyssig, G. Escuela, B. Reynaert, T. Veloz, B. Ibrahim and P. Dittrich, Cycles and the qualitative evolution of chemical systems PLoS One 7 (2012), e45772.
doi: 10.1371/journal.pone.0045772.
|
[26]
|
P. Kreyssig, C. Wozar, S. Peter, T. Veloz, B. Ibrahim and P. Dittrich, Effects of small particle numbers on long-term behaviour in discrete biochemical systems, Bioinformatics, 30 (2014), i475-i481.
doi: 10.1093/bioinformatics/btu453.
|
[27]
|
M. Lohel, B. Ibrahim, S. Diekmann and P. Dittrich, The role of localization in the operation of the mitotic spindle assembly checkpoint, Cell Cycle, 8 (2009), 2650-2660.
doi: 10.4161/cc.8.16.9383.
|
[28]
|
S. Marques, J. Fonseca, P. MA Silva and H. Bousbaa, Targeting the spindle assembly checkpoint for breast cancer treatment, Curr Cancer Drug Targets, 15 (2015), 272-281.
doi: 10.2174/1568009615666150302130010.
|
[29]
|
H. B. Mistry, D. E. MacCallum, R. C. Jackson, M. A. J. Chaplain and F. A. Davidson, Modeling the temporal evolution of the spindle assembly checkpoint and role of Aurora B kinase, Proc Natl Acad Sci U S A, 105 (2008), 20215-20220.
doi: 10.1073/pnas.0810706106.
|
[30]
|
A. Musacchio and E. D. Salmon, The spindle-assembly checkpoint in space and time, Nat Rev Mol Cell Biol, 8 (2007), 379-393.
doi: 10.1038/nrm2163.
|
[31]
|
C. L. Rieder, R. W. Cole, A. Khodjakov and G. Sluder, The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores, J Cell Biol, 130 (1995), 941-948.
doi: 10.1083/jcb.130.4.941.
|
[32]
|
C. L. Rieder, A. Schultz, R. Cole and G. Sluder, Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle, J Cell Biol, 127 (1994), 1301-1310.
doi: 10.1083/jcb.127.5.1301.
|
[33]
|
A. D. Rudner and A. W. Murray, The spindle assembly checkpoint, Curr Opin Cell Biol, 8 (1996), 773-780.
doi: 10.1016/S0955-0674(96)80077-9.
|
[34]
|
R. P. Sear and M. Howard, Modeling dual pathways for the metazoan spindle assembly checkpoint, Proc Natl Acad Sci U S A, 103 (2006), 16758-16763.
doi: 10.1073/pnas.0603174103.
|
[35]
|
L. F. Shampine and M. W. Reichelt, The matlab ode suite, SIAM J Sci Comput, 18 (1997), 1-22.
doi: 10.1137/S1064827594276424.
|
[36]
|
R. D. Skeel and M. Berzins, A method for the spatial discretization of parabolic equations in one space variable, SIAM J Sci Comput, 11 (1990), 1-32.
doi: 10.1137/0911001.
|
[37]
|
F. Stegmeier, M. Rape, V. M. Draviam, G. Nalepa, M. E. Sowa, X. L. Ang, E. R. McDonald, M. Z. Li, G. J. Hannon, P. K. Sorger, M. W. Kirschner, J. W. Harper and S. J. Elledge, Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities, Nature, 446 (2007), 876-881.
doi: 10.1038/nature05694.
|
[38]
|
S. Tschernyschkow, S. Herda, G. Gruenert, V. Döring, D. Görlich, A. Hofmeister, C. Hoischen, P. Dittrich, S. Diekmann and B. Ibrahim, Rule-based modeling and simulations of the inner kinetochore structure, Prog Biophys Mol Biol, 113 (2013), 33-45.
doi: 10.1016/j.pbiomolbio.2013.03.010.
|
[39]
|
A. Verdugo, P. K. Vinod, J. J. Tyson and B. Novak, Molecular mechanisms creating bistable switches at cell cycle transitions Open Biol 3 (2013), 120179.
doi: 10.1098/rsob.120179.
|
[40]
|
Z. Wang, J. V. Shah, M. W. Berns and D. W. Cleveland, In vivo quantitative studies of dynamic intracellular processes using fluorescence correlation spectroscopy, Biophys J, 91 (2006), 343-351.
doi: 10.1529/biophysj.105.077891.
|
[41]
|
T. Wilhelm, The smallest chemical reaction system with bistability BMC Syst Biol 3 (2009), p90.
doi: 10.1186/1752-0509-3-90.
|