[1]
|
D. L. Chao and D. T. Dimitrov, Seasonality and the effectiveness of mass vaccination, Math Biosci Eng, 13 (2016), 249-259.
doi: 10.3934/mbe.2015001.
|
[2]
|
G. Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse and J. M. Hyman, The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile, Math Biosci Eng, 10 (2013), 1455-1474.
doi: 10.3934/mbe.2013.10.1455.
|
[3]
|
L. Esteva and H. M. Yang, Mathematical model to acess the control of aedes aegypti mosquitoes by sterile insect technique, Math. Biosci, 198 (2005), 132-147.
doi: 10.1016/j.mbs.2005.06.004.
|
[4]
|
T. P. O. Evans and S. R. Bishop, A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito aedes aegypti, Math. Biosci, 254 (2014), 6-27.
doi: 10.1016/j.mbs.2014.06.001.
|
[5]
|
Z. Feng and J. X. Velasco-Hernandez, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol, 35 (1997), 523-544.
doi: 10.1007/s002850050064.
|
[6]
|
D. J. Gubler, Dengue and dengue hemorrhagic fever: Its history and resurgence as a global public health problem, (eds. D. J. Gubler, G. Kuno), Dengue and Dengue Hemorrhagic Fever, New York: CAB International, (1997), 1-22.
|
[7]
|
D. J. Gubler, Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century, Trends Microbiol, 10 (2002), 100-103.
doi: 10.1016/S0966-842X(01)02288-0.
|
[8]
|
R.-W. S. Hendron and M. B. Bonsall, The interplay of vaccination and vector control on small dengue networks, J. Theor. Biol, 407 (2016), 349-361.
doi: 10.1016/j.jtbi.2016.07.034.
|
[9]
|
H. Hughes and N. F. Britton, Modelling the use of wolbachia to control dengue fever transmission, Bull Math Biol, 75 (2013), 796-818.
doi: 10.1007/s11538-013-9835-4.
|
[10]
|
https://www.theguardian.com/world/2015/may/24/sterile-mosquitoes-released-in/chinato-fight-dengue-fever.
|
[11]
|
http://www.iflscience.com/health-and-medicine/gm-mosquitoes-set-be-released-brazil-combat-dengue-0/.
|
[12]
|
J. H. Jones,
Notes on $R_{0}$ Department of Anthropological Sciences, Stanford University, 2007.
|
[13]
|
G. Knerer, C. S. M. Currie and S. C. Brailsford, Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: A model-based analysis, Health Care Manag Sci, 18 (2015), 205-217.
doi: 10.1007/s10729-013-9263-x.
|
[14]
|
E. F. Knipling, Possibilities of insect control or eradication through the use of sexually sterile males, J. Econ. Entomol, 48 (1955), 459-462.
doi: 10.1093/jee/48.4.459.
|
[15]
|
E. F. Knipling,
The Basic Principles of Insect Population and Suppression and Management USDA handbook. Washington, D. C. , USDA, 1979.
|
[16]
|
E. F. Knipling, Sterile insect technique as a screwworm control measure: The concept and its development, Misc. Pub. Entomol. Soc. Am, 62 (1985), 4-7.
|
[17]
|
J. P. LaSalle,
The Stability of Dynamical Systems Regional Conf. Series Appl. Math. , 25, SIAM, Philadelphia, 1976.
|
[18]
|
A. Mishra and S. Gakkhar, The effects of awareness and vector control on two strains dengue dynamics, Appl. Math. Comput, 246 (2014), 159-167.
doi: 10.1016/j.amc.2014.07.115.
|
[19]
|
A. M. P. Montoya, A. M. Loaiza and O. T. Gerard, Simulation model for dengue fever transmission with integrated control, Appl. Math. Sci, 10 (2016), 175-185.
doi: 10.12988/ams.2016.510661.
|
[20]
|
D. Moulay, M. A. Aziz-Alaoui and Hee-Dae Kwon, Optimal control of chikungunya disease: Larvae reduction, treatment and prevention, Math Biosci Eng, 9 (2012), 369-392.
doi: 10.3934/mbe.2012.9.369.
|
[21]
|
D. Moulay, M. A. Aziz-Alaoui and M. Cadivel, The chikungunya disease: Modeling, vector and transmission global dynamics, Math. Biosci, 229 (2011), 50-63.
doi: 10.1016/j.mbs.2010.10.008.
|
[22]
|
L. Perko,
Differential Equations and Dynamical Systems Texts in Applied Mathematics, 7. Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4684-0392-3.
|
[23]
|
H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Vaccination models and optimal control strategies to dengue, Math. Biosci, 247 (2014), 1-12.
doi: 10.1016/j.mbs.2013.10.006.
|
[24]
|
S. Syafruddin and M. S. M. Noorani, SEIR model for transmission of dengue fever in Selangor Malaysia, International Journal of Modern Physics: Conference Series, 9 (2012), 380-389.
|
[25]
|
R. C. A. Thomé, H. M. Yang and L. Esteva, Optimal control of aedes aegypti mosquitoes by the sterile insect technique and insecticide, Math. Biosci, 223 (2010), 12-23.
doi: 10.1016/j.mbs.2009.08.009.
|
[26]
|
World Health Organization, Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control, Geneva: World Health Organization and the Special Programme for Research and Training in Tropical Diseases, 2009.
|
[27]
|
http://www.cdc.gov/dengue/epidemiology.
|