April  2018, 15(2): 441-460. doi: 10.3934/mbe.2018020

A network model for control of dengue epidemic using sterile insect technique

1. 

Department of Mathematics, Indian Institute of Technology Roorkee, Uttarakhand 247667, India

2. 

Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France

* Corresponding author

Received  December 15, 2016 Accepted  March 31, 2017 Published  June 2017

Fund Project: The first author is supported by MHRD grant.

In this paper, a network model has been proposed to control dengue disease transmission considering host-vector dynamics in $n$ patches. The control of mosquitoes is performed by SIT. In SIT, the male insects are sterilized in the laboratory and released into the environment to control the number of offsprings. The basic reproduction number has been computed. The existence and stability of various states have been discussed. The bifurcation diagram has been plotted to show the existence and stability regions of disease-free and endemic states for an isolated patch. The critical level of sterile male mosquitoes has been obtained for the control of disease. The basic reproduction number for $n$ patch network model has been computed. It is evident from numerical simulations that SIT control in one patch may control the disease in the network having two/three patches with suitable coupling among them.

Citation: Arti Mishra, Benjamin Ambrosio, Sunita Gakkhar, M. A. Aziz-Alaoui. A network model for control of dengue epidemic using sterile insect technique. Mathematical Biosciences & Engineering, 2018, 15 (2) : 441-460. doi: 10.3934/mbe.2018020
References:
[1]

D. L. Chao and D. T. Dimitrov, Seasonality and the effectiveness of mass vaccination, Math Biosci Eng, 13 (2016), 249-259.  doi: 10.3934/mbe.2015001.  Google Scholar

[2]

G. ChowellR. FuentesA. OleaX. AguileraH. Nesse and J. M. Hyman, The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile, Math Biosci Eng, 10 (2013), 1455-1474.  doi: 10.3934/mbe.2013.10.1455.  Google Scholar

[3]

L. Esteva and H. M. Yang, Mathematical model to acess the control of aedes aegypti mosquitoes by sterile insect technique, Math. Biosci, 198 (2005), 132-147.  doi: 10.1016/j.mbs.2005.06.004.  Google Scholar

[4]

T. P. O. Evans and S. R. Bishop, A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito aedes aegypti, Math. Biosci, 254 (2014), 6-27.  doi: 10.1016/j.mbs.2014.06.001.  Google Scholar

[5]

Z. Feng and J. X. Velasco-Hernandez, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol, 35 (1997), 523-544.  doi: 10.1007/s002850050064.  Google Scholar

[6]

D. J. Gubler, Dengue and dengue hemorrhagic fever: Its history and resurgence as a global public health problem, (eds. D. J. Gubler, G. Kuno), Dengue and Dengue Hemorrhagic Fever, New York: CAB International, (1997), 1-22.   Google Scholar

[7]

D. J. Gubler, Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century, Trends Microbiol, 10 (2002), 100-103.  doi: 10.1016/S0966-842X(01)02288-0.  Google Scholar

[8]

R.-W. S. Hendron and M. B. Bonsall, The interplay of vaccination and vector control on small dengue networks, J. Theor. Biol, 407 (2016), 349-361.  doi: 10.1016/j.jtbi.2016.07.034.  Google Scholar

[9]

H. Hughes and N. F. Britton, Modelling the use of wolbachia to control dengue fever transmission, Bull Math Biol, 75 (2013), 796-818.  doi: 10.1007/s11538-013-9835-4.  Google Scholar

[10]

https://www.theguardian.com/world/2015/may/24/sterile-mosquitoes-released-in/chinato-fight-dengue-fever. Google Scholar

[11]

http://www.iflscience.com/health-and-medicine/gm-mosquitoes-set-be-released-brazil-combat-dengue-0/. Google Scholar

[12]

J. H. Jones, Notes on $R_{0}$ Department of Anthropological Sciences, Stanford University, 2007. Google Scholar

[13]

G. KnererC. S. M. Currie and S. C. Brailsford, Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: A model-based analysis, Health Care Manag Sci, 18 (2015), 205-217.  doi: 10.1007/s10729-013-9263-x.  Google Scholar

[14]

E. F. Knipling, Possibilities of insect control or eradication through the use of sexually sterile males, J. Econ. Entomol, 48 (1955), 459-462.  doi: 10.1093/jee/48.4.459.  Google Scholar

[15]

E. F. Knipling, The Basic Principles of Insect Population and Suppression and Management USDA handbook. Washington, D. C. , USDA, 1979. Google Scholar

[16]

E. F. Knipling, Sterile insect technique as a screwworm control measure: The concept and its development, Misc. Pub. Entomol. Soc. Am, 62 (1985), 4-7.   Google Scholar

[17]

J. P. LaSalle, The Stability of Dynamical Systems Regional Conf. Series Appl. Math. , 25, SIAM, Philadelphia, 1976.  Google Scholar

[18]

A. Mishra and S. Gakkhar, The effects of awareness and vector control on two strains dengue dynamics, Appl. Math. Comput, 246 (2014), 159-167.  doi: 10.1016/j.amc.2014.07.115.  Google Scholar

[19]

A. M. P. MontoyaA. M. Loaiza and O. T. Gerard, Simulation model for dengue fever transmission with integrated control, Appl. Math. Sci, 10 (2016), 175-185.  doi: 10.12988/ams.2016.510661.  Google Scholar

[20]

D. MoulayM. A. Aziz-Alaoui and Hee-Dae Kwon, Optimal control of chikungunya disease: Larvae reduction, treatment and prevention, Math Biosci Eng, 9 (2012), 369-392.  doi: 10.3934/mbe.2012.9.369.  Google Scholar

[21]

D. MoulayM. A. Aziz-Alaoui and M. Cadivel, The chikungunya disease: Modeling, vector and transmission global dynamics, Math. Biosci, 229 (2011), 50-63.  doi: 10.1016/j.mbs.2010.10.008.  Google Scholar

[22]

L. Perko, Differential Equations and Dynamical Systems Texts in Applied Mathematics, 7. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4684-0392-3.  Google Scholar

[23]

H. S. RodriguesM. T. T. Monteiro and D. F. M. Torres, Vaccination models and optimal control strategies to dengue, Math. Biosci, 247 (2014), 1-12.  doi: 10.1016/j.mbs.2013.10.006.  Google Scholar

[24]

S. Syafruddin and M. S. M. Noorani, SEIR model for transmission of dengue fever in Selangor Malaysia, International Journal of Modern Physics: Conference Series, 9 (2012), 380-389.   Google Scholar

[25]

R. C. A. ThoméH. M. Yang and L. Esteva, Optimal control of aedes aegypti mosquitoes by the sterile insect technique and insecticide, Math. Biosci, 223 (2010), 12-23.  doi: 10.1016/j.mbs.2009.08.009.  Google Scholar

[26]

World Health Organization, Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control, Geneva: World Health Organization and the Special Programme for Research and Training in Tropical Diseases, 2009. Google Scholar

[27]

http://www.cdc.gov/dengue/epidemiology. Google Scholar

show all references

References:
[1]

D. L. Chao and D. T. Dimitrov, Seasonality and the effectiveness of mass vaccination, Math Biosci Eng, 13 (2016), 249-259.  doi: 10.3934/mbe.2015001.  Google Scholar

[2]

G. ChowellR. FuentesA. OleaX. AguileraH. Nesse and J. M. Hyman, The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile, Math Biosci Eng, 10 (2013), 1455-1474.  doi: 10.3934/mbe.2013.10.1455.  Google Scholar

[3]

L. Esteva and H. M. Yang, Mathematical model to acess the control of aedes aegypti mosquitoes by sterile insect technique, Math. Biosci, 198 (2005), 132-147.  doi: 10.1016/j.mbs.2005.06.004.  Google Scholar

[4]

T. P. O. Evans and S. R. Bishop, A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito aedes aegypti, Math. Biosci, 254 (2014), 6-27.  doi: 10.1016/j.mbs.2014.06.001.  Google Scholar

[5]

Z. Feng and J. X. Velasco-Hernandez, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol, 35 (1997), 523-544.  doi: 10.1007/s002850050064.  Google Scholar

[6]

D. J. Gubler, Dengue and dengue hemorrhagic fever: Its history and resurgence as a global public health problem, (eds. D. J. Gubler, G. Kuno), Dengue and Dengue Hemorrhagic Fever, New York: CAB International, (1997), 1-22.   Google Scholar

[7]

D. J. Gubler, Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century, Trends Microbiol, 10 (2002), 100-103.  doi: 10.1016/S0966-842X(01)02288-0.  Google Scholar

[8]

R.-W. S. Hendron and M. B. Bonsall, The interplay of vaccination and vector control on small dengue networks, J. Theor. Biol, 407 (2016), 349-361.  doi: 10.1016/j.jtbi.2016.07.034.  Google Scholar

[9]

H. Hughes and N. F. Britton, Modelling the use of wolbachia to control dengue fever transmission, Bull Math Biol, 75 (2013), 796-818.  doi: 10.1007/s11538-013-9835-4.  Google Scholar

[10]

https://www.theguardian.com/world/2015/may/24/sterile-mosquitoes-released-in/chinato-fight-dengue-fever. Google Scholar

[11]

http://www.iflscience.com/health-and-medicine/gm-mosquitoes-set-be-released-brazil-combat-dengue-0/. Google Scholar

[12]

J. H. Jones, Notes on $R_{0}$ Department of Anthropological Sciences, Stanford University, 2007. Google Scholar

[13]

G. KnererC. S. M. Currie and S. C. Brailsford, Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: A model-based analysis, Health Care Manag Sci, 18 (2015), 205-217.  doi: 10.1007/s10729-013-9263-x.  Google Scholar

[14]

E. F. Knipling, Possibilities of insect control or eradication through the use of sexually sterile males, J. Econ. Entomol, 48 (1955), 459-462.  doi: 10.1093/jee/48.4.459.  Google Scholar

[15]

E. F. Knipling, The Basic Principles of Insect Population and Suppression and Management USDA handbook. Washington, D. C. , USDA, 1979. Google Scholar

[16]

E. F. Knipling, Sterile insect technique as a screwworm control measure: The concept and its development, Misc. Pub. Entomol. Soc. Am, 62 (1985), 4-7.   Google Scholar

[17]

J. P. LaSalle, The Stability of Dynamical Systems Regional Conf. Series Appl. Math. , 25, SIAM, Philadelphia, 1976.  Google Scholar

[18]

A. Mishra and S. Gakkhar, The effects of awareness and vector control on two strains dengue dynamics, Appl. Math. Comput, 246 (2014), 159-167.  doi: 10.1016/j.amc.2014.07.115.  Google Scholar

[19]

A. M. P. MontoyaA. M. Loaiza and O. T. Gerard, Simulation model for dengue fever transmission with integrated control, Appl. Math. Sci, 10 (2016), 175-185.  doi: 10.12988/ams.2016.510661.  Google Scholar

[20]

D. MoulayM. A. Aziz-Alaoui and Hee-Dae Kwon, Optimal control of chikungunya disease: Larvae reduction, treatment and prevention, Math Biosci Eng, 9 (2012), 369-392.  doi: 10.3934/mbe.2012.9.369.  Google Scholar

[21]

D. MoulayM. A. Aziz-Alaoui and M. Cadivel, The chikungunya disease: Modeling, vector and transmission global dynamics, Math. Biosci, 229 (2011), 50-63.  doi: 10.1016/j.mbs.2010.10.008.  Google Scholar

[22]

L. Perko, Differential Equations and Dynamical Systems Texts in Applied Mathematics, 7. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4684-0392-3.  Google Scholar

[23]

H. S. RodriguesM. T. T. Monteiro and D. F. M. Torres, Vaccination models and optimal control strategies to dengue, Math. Biosci, 247 (2014), 1-12.  doi: 10.1016/j.mbs.2013.10.006.  Google Scholar

[24]

S. Syafruddin and M. S. M. Noorani, SEIR model for transmission of dengue fever in Selangor Malaysia, International Journal of Modern Physics: Conference Series, 9 (2012), 380-389.   Google Scholar

[25]

R. C. A. ThoméH. M. Yang and L. Esteva, Optimal control of aedes aegypti mosquitoes by the sterile insect technique and insecticide, Math. Biosci, 223 (2010), 12-23.  doi: 10.1016/j.mbs.2009.08.009.  Google Scholar

[26]

World Health Organization, Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control, Geneva: World Health Organization and the Special Programme for Research and Training in Tropical Diseases, 2009. Google Scholar

[27]

http://www.cdc.gov/dengue/epidemiology. Google Scholar

Figure 1.  The transfer diagram representing the system (1)-(11) dynamics. The births, deaths and migration are not included.
Figure 2.  The existence of the state $P_2$ with respect to parameters $\beta^2$ and $\phi$.
Figure 3.  Bifurcation diagram for the stability of the state $P_2$
Figure 4.  (a) A 3D phase plot showing the unstable behavior for the state $P^-_3$ for the four initial conditions $Y_1$=(14, 0.007, 0.001, 34, 75, 3.5, 2.5, 32, 0.004, 39,600), $Y_2$=(19, 0.009, 0.003, 32, 70, 3.0, 3.0, 36, 0.009, 35,615), $Y_3$=(20, 0.009, 0.08, 30, 78, 3.9, 2.0, 38, 0.09, 42,620) and $Y_4$=(15, 0.006, 0.05, 37, 72, 3.2, 1.5, 30, 0.02, 45,630). (b) A 3D phase plot showing the stable behavior for the state $P^+_3$ for the four initial conditions $Z_1$=(0.4, 0.013, 0.005, 40,400, 18, 50,140, 0.15,200,600), $Z_2$=(1.8, 0.025, 0.009, 51,410, 21, 43,145, 0.09,210,630), $Z_3$=(1.5, 0.022, 0.008, 48,398, 14, 45,132, 0.11,194,615) and $Z_4$=(0.8, 0.018, 0.007, 45,390, 17, 48,138, 0.18,198,610).
Figure 5.  Bifurcation plot of system (12)-(22) with respect to $\omega^{1}$.
Figure 6.  The network topology for $n$=2.
Figure 7.  The network topology for $n$=3.
Figure 8.  (a) Time series for $I_1$ (black colour) and $I_2$ (grey colour) converge to zero. (b) Time series for $I_1$ and $I_2$ converge to endemic state. (c) Time series for $I_1$ and $I_2$ converge to endemic state. (d) Time series for $I_1$ and $I_2$ converge to disease-free state. (e)Time series for $I_1$ (black colour), $I_2$ (dotted line) and $I_3$ (grey colour) for different patches converge to disease-free state. (f)Time series for $I_1$, $I_2$ and $I_3$ converge to endemic state.
Table 1.  Parameters of the Model
Parameters Description of parameters
$\alpha$ Human recovery rate
$\beta^1$ Transmission rate of infection from female mosquitoes to human
$\beta^2$ Mosquitoes mating rate
$\beta^3$ Transmission rate of infection from human to female mosquito
$\gamma$ Transition rate from aquatic stage to adult mosquito
$\mu$ Natural death rate of human
$\omega$ Birth rate of human
$\omega^1$ Constant recruitment rate of sterile male mosquito
$\phi$ Recruitment rate for aquatic mosquito
$C$ Carrying capacity for aquatic/adult mosquito
$d$ Natural death rate of mosquito at aquatic state
$d^{1}$ Natural death rate of mosquito
$k$ Rate at which exposed human become infectious
$m_{ij}$ Migration rate from patch j to patch i
$p$ Proportion of female mosquito
Parameters Description of parameters
$\alpha$ Human recovery rate
$\beta^1$ Transmission rate of infection from female mosquitoes to human
$\beta^2$ Mosquitoes mating rate
$\beta^3$ Transmission rate of infection from human to female mosquito
$\gamma$ Transition rate from aquatic stage to adult mosquito
$\mu$ Natural death rate of human
$\omega$ Birth rate of human
$\omega^1$ Constant recruitment rate of sterile male mosquito
$\phi$ Recruitment rate for aquatic mosquito
$C$ Carrying capacity for aquatic/adult mosquito
$d$ Natural death rate of mosquito at aquatic state
$d^{1}$ Natural death rate of mosquito
$k$ Rate at which exposed human become infectious
$m_{ij}$ Migration rate from patch j to patch i
$p$ Proportion of female mosquito
Parameters Parameters values
$\alpha$ 0.3
$\beta^1$ 0.02
$\beta^2$ 0.7
$\beta^3$ 0.03
$\gamma$ 0.075
$\omega$ 0.002
$\phi$ 5
$ \mu$ 0.0000456
$C$ 450
$d$ 0.05
$d^{1}$ 0.0714
$k$ 0.1667
$p$ 0.5
Parameters Parameters values
$\alpha$ 0.3
$\beta^1$ 0.02
$\beta^2$ 0.7
$\beta^3$ 0.03
$\gamma$ 0.075
$\omega$ 0.002
$\phi$ 5
$ \mu$ 0.0000456
$C$ 450
$d$ 0.05
$d^{1}$ 0.0714
$k$ 0.1667
$p$ 0.5
Parameters Parameters values
$\alpha_i$ 0.5
$\beta_i^1$ 0.001
$\beta_i^2$ 0.7
$\beta_i^3$ 0.001
$\gamma_i$ 0.075
$\omega_i$ 0.029
$\phi_i$ 5
$ \mu_i$ 0.0000456
$C_i$ 450
$d_i$ 0.05
$d_i^{1}$ 0.0714
$k_i$ 0.1667
$p_i$ 0.5
Parameters Parameters values
$\alpha_i$ 0.5
$\beta_i^1$ 0.001
$\beta_i^2$ 0.7
$\beta_i^3$ 0.001
$\gamma_i$ 0.075
$\omega_i$ 0.029
$\phi_i$ 5
$ \mu_i$ 0.0000456
$C_i$ 450
$d_i$ 0.05
$d_i^{1}$ 0.0714
$k_i$ 0.1667
$p_i$ 0.5
Table 4.  When SIT is applied only in the patch-1 i.e.($\omega^{1}_1=70$, $\omega^{1}_2=0$)
Cases Migration in patch-1 Migration in patch-2 Conclusions
(a) $m_{12}$=0 $m_{21}$=0 Isolated patches with $R_0$ of patch-1 is $0.2515<1$ (37). Disease is controlled in patch-1 only.
(b) $m_{12}$=0.005 $m_{21}$=0.0006 $R_0^2$ for two patch network model is $0.7678<1$ (43). Two patch network model may be disease-free. The time-series confirms that the infection level tends to zero in both the patches Figure 8a.
(c) $m_{12}$=0.009 $m_{21}$=0.0025 $R_0^2$ for two-patch network model is $1.4763>1$ (43). SIT method will not be able to control disease with this migration combination Figure 8b.
Cases Migration in patch-1 Migration in patch-2 Conclusions
(a) $m_{12}$=0 $m_{21}$=0 Isolated patches with $R_0$ of patch-1 is $0.2515<1$ (37). Disease is controlled in patch-1 only.
(b) $m_{12}$=0.005 $m_{21}$=0.0006 $R_0^2$ for two patch network model is $0.7678<1$ (43). Two patch network model may be disease-free. The time-series confirms that the infection level tends to zero in both the patches Figure 8a.
(c) $m_{12}$=0.009 $m_{21}$=0.0025 $R_0^2$ for two-patch network model is $1.4763>1$ (43). SIT method will not be able to control disease with this migration combination Figure 8b.
Table 5.  When SIT is applied only in the patch-1 i.e.($\omega^{1}_1=60$, $\omega^{1}_2=0$)
Cases Migration in patch-1 Migration in patch-2 Conclusions
(d) $m_{12}$=0 $m_{21}$=0 Isolated patches with $R_0$ of patch-1 is 0.2515$<1$. Disease is controlled in patch-1 only.
(e) $m_{12}$=0.005 $m_{21}$=0.001 $R_0^2$ for two-patch network model is $1.1778>1$. SIT method will not be able to control disease with this migration combination. Disease may persist in the network Figure 8c.
(f) $m_{12}$=0.009 $m_{21}$=0.001 $R_0^2$ for two-patch network model is $0.7273<1$. The network may now be disease free Figure 8d.
Cases Migration in patch-1 Migration in patch-2 Conclusions
(d) $m_{12}$=0 $m_{21}$=0 Isolated patches with $R_0$ of patch-1 is 0.2515$<1$. Disease is controlled in patch-1 only.
(e) $m_{12}$=0.005 $m_{21}$=0.001 $R_0^2$ for two-patch network model is $1.1778>1$. SIT method will not be able to control disease with this migration combination. Disease may persist in the network Figure 8c.
(f) $m_{12}$=0.009 $m_{21}$=0.001 $R_0^2$ for two-patch network model is $0.7273<1$. The network may now be disease free Figure 8d.
Table 6.  When SIT is applied only in the patch-1 i.e.($\omega^{1}_1=70$, $\omega^{1}_2=0$ and $\omega^{1}_3=0$)
Cases Migration in patch-1 Migration in patch-2 Migration in patch-3 $R^n_0$ for network model
(g) $m_{12}$=0.0001, $m_{13}$=0.002 $m_{21}$=0.0001 $m_{31}$=0.0001 $0.6762 (<1)$
(h) $m_{12}$=0.0002, $m_{13}$=0.0002 $m_{21}$=0.001 $m_{31}$=0.001 $2.6813 (>1)$
Cases Migration in patch-1 Migration in patch-2 Migration in patch-3 $R^n_0$ for network model
(g) $m_{12}$=0.0001, $m_{13}$=0.002 $m_{21}$=0.0001 $m_{31}$=0.0001 $0.6762 (<1)$
(h) $m_{12}$=0.0002, $m_{13}$=0.0002 $m_{21}$=0.001 $m_{31}$=0.001 $2.6813 (>1)$
[1]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[2]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[3]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[4]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[6]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[9]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[10]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[11]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[14]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[15]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[16]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[17]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[18]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[19]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (169)
  • HTML views (258)
  • Cited by (0)

[Back to Top]