[1]
|
K. A. Alexander and J. W. McNutt, Human behavior influences infectious disease emergence at the human-animal interface, Frontiers in Ecology and the Environment, 8 (2010), 522-526.
|
[2]
|
M. C. Auld, Estimating behavioral response to the AIDS epidemic, Contributions to Economic Analysis and Policy 5 (2006), Art. 12.
|
[3]
|
N. Bacaer, Approximation of the basic reproduction number for vector-borne disease with periodic vector population, Bulleting of Mathematical Biology, 69 (2007), 1067-1091.
doi: 10.1007/s11538-006-9166-9.
|
[4]
|
C. T. Bauch, A versatile ODE approximation to a network model for the spread of sexually transmitted diseases, Journal of Mathematical Biology, 45 (2002), 375-395.
doi: 10.1007/s002850200153.
|
[5]
|
C. T. Bauch, The spread of infectious diseases in spatially structured populations: An invasory pair approximation, Mathematical Biosciences, 198 (2005), 217-237.
doi: 10.1016/j.mbs.2005.06.005.
|
[6]
|
C. T. Bauch, A. d'Onofrio and P. Manfredi, Behavioral epidemiology of infectious diseases: An overview, Modeling the interplay between human behavior and the spread of infectious diseases, Springer-Verlag, (2013), 1-19.
doi: 10.1007/978-1-4614-5474-8_1.
|
[7]
|
C. T. Bauch and A. P. Galvani, Using network models to approximate spatial point-process models, Mathematical Biosciences, 184 (2003), 101-114.
doi: 10.1016/S0025-5564(03)00042-7.
|
[8]
|
C. T. Bauch and D. A. Rand, A moment closure model for sexually transmitted disease transmission through a concurrent partnership network, The Royal Society, 267 (2000), 2019-2027.
doi: 10.1098/rspb.2000.1244.
|
[9]
|
J. Benoit, A. Nunes and M. Telo da Gama, Pair approximation models for disease spread, The European Physical Journal B, 50 (2006), 177-181.
doi: 10.1140/epjb/e2006-00096-x.
|
[10]
|
K. Dietz, The estimation of the basic reproduction number for infectious diseases, Statistical Methods in Medical Research, 2 (1993), 23-41.
doi: 10.1177/096228029300200103.
|
[11]
|
S. P. Ellner, Pair approximation for lattice models with multiple interaction scales, Journal of Theoretical Biology, 210 (2001), 435-447.
doi: 10.1006/jtbi.2001.2322.
|
[12]
|
E. P. Fenichel, C. Castillo-Chavez, M. G. Geddia, G. Chowell, P. A. Gonzalez Parra, G. J. Hickling, G. Holloway, R. Horan, B. Morin, C. Perrings, M. Springborn, L. Velazquez and C. Villalobos, Adaptive human behavior in epidemiological models, Proceedings of the National Academy of Sciences, 108 (2011), 6306-6311.
doi: 10.1073/pnas.1011250108.
|
[13]
|
N. M. Ferguson, C. A. Donnelly and R. M. Anderson, The foot and mouth epidemic in Great Britain: pattern of spread and impact of interventions, Science, 292 (2001), 1155-1160.
doi: 10.1126/science.1061020.
|
[14]
|
M. J. Ferrari, S. Bansal, L. A. Meyers and O. N. Bjϕrnstad, Network frailty and the geometry of head immunity, Proceedings of the Royal Society B, 273 (2006), 2743-2748.
|
[15]
|
S. Funk, E. Gilad, C. Watkins and V. A. A. Jansen, The spread of awareness and its impact on epidemic outbreaks, Proceedings of the National Academy of Sciences, 106 (2009), 6872-6877.
doi: 10.1073/pnas.0810762106.
|
[16]
|
R. J. Glass, L. M. Glass, W. E. Beyeler and H. J. Min, Targeted social distancing designs for pandemic influenza, Emerging Infectious Diseases, 12 (2016), 1671-1681.
|
[17]
|
D. Hiebeler, Moment equations and dynamics of a household SIS epidemiological model, Bulletin of Mathematical Biology, 68 (2006), 1315-1333.
doi: 10.1007/s11538-006-9080-1.
|
[18]
|
M. J. Keeling, The effects of local spatial structure on epidemiological invasions, Proceedings of The Royal Society of London B, 266 (1999), 859-867.
doi: 10.1098/rspb.1999.0716.
|
[19]
|
M.J. Keeling, D. A. Rand and A. J. Morris, Correlation models for childhood epidemics, Proceedings of The Royal Society of London B, 264 (1997), 1149-1156.
doi: 10.1098/rspb.1997.0159.
|
[20]
|
J. Li, D. Blakeley and R. J. Smith, The failure of $\mathbb{R}_0$, Computational and Mathematical Methods in Medicine, 12 (2011), 1-17.
|
[21]
|
C. N. L. Macpherson, Human behavior and the epidemiology of parasitic zoonoses, International Journal for Parasitology, 35 (2005), 1319-1331.
|
[22]
|
S. Maharaj and A. Kleczkowski, Controlling epidemic spread by social distancing: Do it well or not at all, BMC Public Health, 12 (2012), p679.
doi: 10.1186/1471-2458-12-679.
|
[23]
|
L. Mao and Y. Yang, Coupling infectious diseases, human preventive behavior, and networks--a conceptual framework for epidemic modeling, Social Science Medicine, 74 (2012), 167-175.
doi: 10.1016/j.socscimed.2011.10.012.
|
[24]
|
J. P. McGowan, S. S. Shah, C. E. Ganea, S. Blum, J. A. Ernst, K. L. Irwin, N. Olivo and P. J. Weidle, Risk behavior for transmission of Human Immunodeficiency Virus (HIV) among HIV-seropositive individuals in an urban setting, Clinical Infectious Diseases, 38 (2004), 122-127.
doi: 10.1086/380128.
|
[25]
|
T. Modie-Moroka, Intimate partner violence and sexually risky behavior in Botswana: Implications for HIV prevention, Health Care for Women International, 30 (2009), 230-231.
doi: 10.1080/07399330802662036.
|
[26]
|
S. S. Morse, Factors in the emergence of infectious diseases, Factors in the Emergence of Infectious Diseases, (2001), 8-26.
doi: 10.1057/9780230524248_2.
|
[27]
|
S. Mushayabasa, C. P. Bhunu and M. Dhlamini, Impact of vaccination and culling on controlling foot and mouth disease: A mathematical modeling approach, World of Journal Vaccines, 1 (2011), 156-161.
|
[28]
|
S. O. Oyeyemi, E. Gabarron and R. Wynn, Ebola, Twitter, and misinformation: A dangerous combination?, British Medical Journal, 349 (2014), g6178.
doi: 10.1136/bmj.g6178.
|
[29]
|
P. E. Parham and N. M. Ferguson, Space and contact networks: Capturing of the locality of disease transmission, Journal of Royal Society, 3 (2005), 483-493.
doi: 10.1098/rsif.2005.0105.
|
[30]
|
P. E. Parham, B. K. Singh and N. M. Ferguson, Analytical approximation of spatial epidemic models of foot and mouth disease, Theoretical Population Biology, 72 (2008), 349-368.
|
[31]
|
F. M. Pillemer, R. J. Blendon, A. M. Zaslavsky and B. Y. Lee, Predicting support for non-pharmaceutical interventions during infectious outbreaks: A four region analysis, Disasters, 39 (2014), 125-145.
|
[32]
|
D. A. Rand, Correlation equations and pair approximations for spatial ecologies, CWI Quarterly, 12 (1999), 329-368.
|
[33]
|
C. T. Reluga, Game theory of social distancing in response to an epidemic Plos Computational Biology 6 (2010), e1000793, 9pp.
doi: 10.1371/journal.pcbi.1000793.
|
[34]
|
N. Ringa and C. T. Bauch, Dynamics and control of foot and mouth disease in endemic countries: A pair approximation model, Journal of Theoretical Biology, 357 (2014), 150-159.
doi: 10.1016/j.jtbi.2014.05.010.
|
[35]
|
A. Rizzo, M. Frasca and M. Porfiri, Effect of individual behavior on epidemic spreading in activity-driven networks, Physical Review E, 90 (2014), 042801.
doi: 10.1103/PhysRevE.90.042801.
|
[36]
|
M. Salathe and S. Bonhoeffer, The effect of opinion clustering on disease outbreaks, Journal of The Royal Society Interface, 5 (2008), 1505-1508.
doi: 10.1098/rsif.2008.0271.
|
[37]
|
L. B. Shaw and I. B. Schwartz, Fluctuating epidemics on adaptive networks, Physical Review E, 77 (2008), 066101, 10pp.
doi: 10.1103/PhysRevE.77.066101.
|
[38]
|
R. L. Stoneburner and D. Low-Beer, Population-level HIV decline and behavioral risk avoidance in Uganda, Science, 304 (2004), 714-718.
doi: 10.1126/science.1093166.
|
[39]
|
R. R. Swenson, W. S. Hadley, C. D. Houck, S. K. Dance and L. K. Brown, Who accepts a rapid HIV antibody test? The role of race/ethnicity and HIV risk behavior among community adolescents, Journal of Adolescent Health, 48 (2011), 527-529.
doi: 10.1016/j.jadohealth.2010.08.013.
|
[40]
|
J. M. Tchuenche and C. T. Bauch, Dynamics of an infectious disease where media coverage influences transmission ISRN Biomathematics2012 (2012), Article ID 581274, 10pp.
doi: 10.5402/2012/581274.
|