[1]
|
F. Bauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Part IV 2nd edition, Springer-Verlag, New York, 2012.
doi: 10.1007/978-1-4614-1686-9.
|
[2]
|
M. H. A. Biswas, L. T. Paiva and MdR. de Pinho, A SEIR model for control of infectious diseases with constraints, Mathematical Biosciences and Engineering, 11 (2014), 761-784.
doi: 10.3934/mbe.2014.11.761.
|
[3]
|
A. E. Bryson, W. F. Denham and S. E. Dreyfus, Optimal Programming Problems with Inequality Constraints I, AIAA Journal, 1 (1963), 2544-2550.
doi: 10.2514/3.2107.
|
[4]
|
O. Diekmann, H. Heesterbeek and T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princton University Press, Princton, 2013.
|
[5]
|
R. Fourer, D. Gay and B. Kernighan, AMPL: A Modeling Language for Mathematical Programming Duxbury Press, Pacific Grove, 2002.
|
[6]
|
W. E. Hamilton, On nonexistence of boundary arcs in control problems with bounded state variables, IEEE Transactions on Automatic Control, AC-17 (1972), 338-343.
|
[7]
|
R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints, SIAM Review, 37 (1995), 181-218.
doi: 10.1137/1037043.
|
[8]
|
K. Ito and K. Kunisch, Asymptotic properties of receding horizont optimal control problems, SIAM J. Control Optim., 40 (2002), 1585-1610.
doi: 10.1137/S0363012900369423.
|
[9]
|
D. H. Jacobson, M. M. Lele and J. L.. Speyer, New necessary conditions of optimality for control problems with state variable inequality constraints, Journal of Mathematical Analysis and Applications, 35 (1971), 255-284.
doi: 10.1016/0022-247X(71)90219-8.
|
[10]
|
I. Kornienko, L. T. Paiva and MdR. de Pinho, Introducing state constraints in optimal control for health problems, Procedia Technology, 17 (2014), 415-422.
doi: 10.1016/j.protcy.2014.10.249.
|
[11]
|
V. Lykina, Beiträge zur Theorie der Optimalsteuerungsprobleme mit unendlichem Zeithorizont, Dissertation, Brandenburgische Technische Universität Cottbus, Germany, 2010, http://opus.kobv.de/btu/volltexte/2010/1861/pdf/dissertationLykina.pdf.
|
[12]
|
V. Lykina, S. Pickenhain and M. Wagner, On a resource allocation model with infinite horizon, Applied Mathematics and Computation, 204 (2008), 595-601.
doi: 10.1016/j.amc.2008.05.041.
|
[13]
|
H. Maurer and H. J Pesch, Direct optimization methods for solving a complex state-constrained optimal control problem in microeconomics, Applied Mathematics and Computation, 204 (2008), 568-579.
doi: 10.1016/j.amc.2008.05.035.
|
[14]
|
H. Maurer and MdR. de Pinho, Optimal control of epidemiological SEIR models with L1-objectives and control-state constraints, Pac. J. Optim., 12 (2016), 415-436.
|
[15]
|
J. D. Murray, Mathematical Biology: Ⅰ An Introduction 3rd edition, Springer-Verlag, New York, 2002.
|
[16]
|
J. D. Murray, Mathematical Biology: Ⅱ Spatial Models and Biomedical Applications 3rd edition, Springer-Verlag, New York, 2003.
|
[17]
|
R. M. Neilan and S. Lenhart, An introduction to optimal control with an application in disease modeling, DIMACS Series in Discrete Mathematics, 75 (2010), 67-81.
|
[18]
|
H. J. Pesch, A practical guide to the solution of real-life optimal control problems, Control and Cybernetics, 23 (1994), 7-60.
|
[19]
|
S. Pickenhain, Infinite horizon optimal control problems in the light of convex analysis in Hilbert Spaces, Set-Valued and Variational Analysis, 23 (2015), 169-189.
doi: 10.1007/s11228-014-0304-5.
|
[20]
|
M. Plail and H. J. Pesch, The Cold War and the maximum principle of optimal control, Doc. Math. , 2012, Extra vol. : Optimization stories, 331–343.
|
[21]
|
H. Schättler, U. Ledzewicz and H. Maurer, Sufficient conditions for strong local optimality in optimal control problems of L:2-type objectives and control constraints, Dicrete and Continuous Dynamical Systems Series B, 19 (2014), 2657-2679.
doi: 10.3934/dcdsb.2014.19.2657.
|
[22]
|
M. Thäter, Restringierte Optimalsteuerungsprobleme bei Epidemiemodellen Master Thesis, Department of Mathematics, University of Bayreuth in Bayreuth, 2014.
|
[23]
|
P.-F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Correspondance Mathématique et Physique, 10 (1838), 113-121.
|
[24]
|
A. Wächter,
An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering PhD Thesis, Carnegie Mellon University in Pittsburgh, 2002.
|
[25]
|
A. Wächter and L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y.
|
[26]
|
D. Wenzke, V. Lykina and S. Pickenhain, State and time transformations of infinite horizon optimal control problems, Contemporary Mathematics Series of The AMS, 619 (2014), 189-208.
doi: 10.1090/conm/619/12391.
|