[1]
|
J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Spring-Verlag, New York, 2003.
|
[2]
|
G. A. Polis, C. A. Myers and R. D. Holt, The ecology and evolution of intraguild predation: Potential competitors that each other, Ann. Rev. Ecol. Sys., 20 (1989), 297-330.
doi: 10.1146/annurev.es.20.110189.001501.
|
[3]
|
M. H. Posey and A. H. Hines, Complex predator-prey interactions within an estuarine benthic community, Ecol., 72 (1991), 2155-2169.
doi: 10.2307/1941567.
|
[4]
|
G. A. Polis and R. D. Holt, Intraguild predation: The dynamics of complex trophic interactions, Trends Ecol. Evol., 7 (1992), 151-154.
|
[5]
|
R. D. Holt and G. A. Polis, A theoretical framework for intraguild predation, Am. Nat., 149 (1997), 745-764.
doi: 10.1086/286018.
|
[6]
|
M. Arim and P. A. Marquet, Intraguild predation: A widespread interaction related to species biology, Ecol. Let., 7 (2004), 557-564.
doi: 10.1111/j.1461-0248.2004.00613.x.
|
[7]
|
P. Amarasekare, Trade-offs, temporal, variation, and species coexistence in communities with intraguild predation, Ecol., 88 (2007), 2720-2728.
doi: 10.1890/06-1515.1.
|
[8]
|
R. Hall, Intraguild predation in the presence of a shared natural enemy, Ecol., 92 (2011), 352-361.
doi: 10.1890/09-2314.1.
|
[9]
|
Y. S. Wang and D. L. DeAngelis, Stability of an intraguild predation system with mutual predation, Commun. Nonlinear Sci. Numer. Simulat., 33 (2016), 141-159.
doi: 10.1016/j.cnsns.2015.09.004.
|
[10]
|
I. Velazquez, D. Kaplan, J. X. Velasco-Hernandez and S. A. Navarrete, Multistability in an open recruitment food web model, Appl. Math. Comp., 163 (2005), 275-294.
doi: 10.1016/j.amc.2004.02.005.
|
[11]
|
S. B. Hsu, S. Ruan and T. H. Yang, Analysis of three species Lotka-Volterra food web models with omnivory, J. Math. Anal. Appl., 426 (2015), 659-687.
doi: 10.1016/j.jmaa.2015.01.035.
|
[12]
|
P. A. Abrams and S. R. Fung, Prey persistence and abundance in systems with intraguild predation and type-2 functional response, J. Theor. Biol., 264 (2010), 1033-1042.
doi: 10.1016/j.jtbi.2010.02.045.
|
[13]
|
A. Verdy and P. Amarasekare, Alternative stable states in communities with intraguild predatiion, J. Theor. Biol., 262 (2010), 116-128.
doi: 10.1016/j.jtbi.2009.09.011.
|
[14]
|
M. Freeze, Y. Chang and W. Feng, Analysis of dynamics in a complex food chain with ratio-dependent functional response, J. Appl. Anal. Comput., 4 (2014), 69-87.
|
[15]
|
Y. Kang and L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, J. Math. Biol., 67 (2013), 1227-1259.
doi: 10.1007/s00285-012-0584-z.
|
[16]
|
H. I. Freedman and V. S. H. Rao, Stability criteria for a system involving two time delays, SIAM J. Appl. Math., 46 (1986), 552-560.
doi: 10.1137/0146037.
|
[17]
|
G. S. K. Wolkowicz and H. X. Xia, Global asymptotic behavior of chemostat model with discrete delays, SIAM J. Appl. Math., 57 (1997), 1019-1043.
doi: 10.1137/S0036139995287314.
|
[18]
|
Y. L. Song, M. A. Han and J. J. Wei, Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays, Physica D, 200 (2005), 185-204.
doi: 10.1016/j.physd.2004.10.010.
|
[19]
|
S. Ruan, On nonlinear dynamics of predator-prey models with discrete delay, Math. Mod. Nat. Phen., 4 (2009), 140-188.
doi: 10.1051/mmnp/20094207.
|
[20]
|
X. Y. Meng, H. F. Huo, X. B. Zhao and H. Xiang, Stability and Hopf bifurcation in a three-species system with feedback delays, Nonlinear Dyn., 64 (2011), 349-364.
doi: 10.1007/s11071-010-9866-4.
|
[21]
|
M. Y. Li and H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL-response to HTLV-I infection, Bull. Math. Biol., 73 (2011), 1774-1793.
doi: 10.1007/s11538-010-9591-7.
|
[22]
|
H. Shu, L. Wang and J. Watmough, Sustained and transient oscillations and chaos induced by delayed antiviral inmune response in an immunosuppressive infective model, J. Math. Biol., 68 (2014), 477-503.
doi: 10.1007/s00285-012-0639-1.
|
[23]
|
M. Yamaguchi, Y. Takeuchi and W. Ma, Dynamical properties of a stage structured three-species model with intra-guild predation, J. Comput. Appl. Math., 201 (2007), 327-338.
doi: 10.1016/j.cam.2005.12.033.
|
[24]
|
H. Shu, X. Hu, L. Wang and J. Watmough, Delayed induced stability switch, multitype bistability and chaos in an intraguild predation model, J. Math. Biol., 71 (2015), 1269-1298.
doi: 10.1007/s00285-015-0857-4.
|
[25]
|
A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern perspectives, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-4978-6.
|
[26]
|
T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463.
doi: 10.1006/jmaa.2000.7182.
|
[27]
|
C. V. Pao, Systems of parabolic equations with continuous and discrete delays, J. Math. Anal. Appl., 205 (1997), 157-185.
doi: 10.1006/jmaa.1996.5177.
|
[28]
|
C. V. Pao, Convergence of solutions of reaction-diffusion systems with time delays, Nonlinear Anal., 48 (2002), 349-362.
doi: 10.1016/S0362-546X(00)00189-9.
|
[29]
|
J. Wang, J. P. Shi and J. J. Wei, Dyanmics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Diff. Equat., 251 (2011), 1276-1304.
doi: 10.1016/j.jde.2011.03.004.
|
[30]
|
C. Tian, Delay-driven spatial patterns in a plankton allelopathic system, Chaos, 22(2012), 013129, 7 pp.
doi: 10.1063/1.3692963.
|
[31]
|
C. Tian and L. Zhang, Hopf bifurcation analysis in a diffusive food-chain model with time delay, Comput. Math. Appl., 66 (2013), 2139-2153.
doi: 10.1016/j.camwa.2013.09.002.
|
[32]
|
W. Zuo and J. Wei, Global stability and Hopf bifurcations of a Beddington-DeAngelis type predator-prey system with diffusion and delay, Appl. Math. Comput., 223 (2013), 423-435.
doi: 10.1016/j.amc.2013.08.029.
|
[33]
|
J. Zhao and J. Wei, Dynamics in a diffusive plankton system with delay and toxic substances effect, Nonlinear Anal., 22 (2015), 66-83.
doi: 10.1016/j.nonrwa.2014.07.010.
|
[34]
|
L. Zhu, H. Zhao and X. M. Wang, Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control, Commun. Nonlinear Sci. Numer. Simulat., 22 (2015), 747-768.
doi: 10.1016/j.cnsns.2014.08.027.
|
[35]
|
Y. Li and M. X. Wang, Hopf bifurcation and global stability of a delayed predator-prey model with prey harvesting, Comput. Math. Appl., 69 (2015), 398-410.
doi: 10.1016/j.camwa.2015.01.003.
|
[36]
|
H. Y. Zhao, X. Zhang and X. Huang, Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion, Appl. Math. Comput., 266 (2015), 462-480.
doi: 10.1016/j.amc.2015.05.089.
|
[37]
|
Q. X. Ye, Z. Y. Li, M. X. Wang and Y. P. Wu, Introduction to Reaction-diffusion Equations (Second Edition), Science Press, Bei Jing, 2011.
|
[38]
|
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin/New York, 1981.
|
[39]
|
S. Ruan and J. Wei, On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testoterone secretion, Math. Med. Biol., 18 (2001), 41-52.
|
[40]
|
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1.
|
[41]
|
B. Hassard, N. Kazarinoff and Y. Wan, Theory and Applications of Hopf bifurcation, Cambridge University Press, Cambridge, 1981.
|
[42]
|
J. Y. Wakano and C. Hauert, Pattern formation and chaos in spatial ecological public goods games, J. Theor. Biol., 268 (2011), 30-38.
doi: 10.1016/j.jtbi.2010.09.036.
|
[43]
|
M. Banerjee, S. Ghoral and N. Mukherjee, Approximated spiral and target patterns in Bazykin's prey-predator model: Multiscale perturbation analysis, Int. J. Bifurcat. Chaos, 27 (2017), 1750038, 14 pp.
doi: 10.1142/S0218127417500389.
|
[44]
|
H. Malchow, S. V. Petrovskii and E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, Simulations, Chapman & Hall / CRC Press, 2008.
|
[45]
|
Q. Ouyang, Pattern Formation in Reaction-Diffusion Systems Shanghai Scientific and Technological Education Publishing House, SHANGHAI, 2000.
|